
575 PROGRAM DESCRIPTIONS FOR INTERACTIVE SIGNAL AND PATTERN 1/L4•
ANALYSIS AND RECO..(U) DAVID W TAYLOR NAVAL SHIP
RESEARCH AND DEVELOPMENT CENTER BET.. W PARSONS ET AL.

JNCLASSIFIED MAR 84 DNSRDC/CMLD-84-05 F/G 9/2 NL

mhIIIEIIIII~I
IllIIIIIIIIIII
IIIIIIIIIIIIII
mIIEIIIIEEEIII
IIIIIIIIIIIl
IIIIIIIIIIIIhl

* ILID3 1220

11112 1.8jL=

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS- 193-A

L/J
Ti ' I -l

DAVID W. TAYLOR NAVAL SHIP
RESEARCH AND DEVELOPMENT CENTER

WBethesda, Maryland 20084Z
E-4

-') PROGRAM DESCRIPTIONS FOR INTERACTIVE SIGNAL AND

*PATTERN ANALYSIS AND RECOGNITION SYSTEM

(ISPARS)

by

William Parsons

Joseph Garner DTIC
James Carlberg
Sidney Berkowitz S ELEC T E

MAY 2 9 6984

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

o u COMPUTATION, MATHEMATICS, AND LOGISTICS DEPARTMENT

r.%4 0 ; DEPARTM1ENTAL REPORT

March 1984 DT!ISRDC/CMLD-84 /05

N oWTsR ..o53 84 05 25 015
'CW D T S O II3 Q -8 0. . .! , ,, . . .ed 396096)

MAJOR DTNSRDC ORGANIZATIONAL COMPONENTS

DTNSRDC

COMMANDER 00
TECHNICAL DIRECTOR

01

OFFICER-IN-CHARGE OFFICER-IN-CHARGE

CARDEROCK ANNAPOLIS
05 04

SYSTEMS
DEVELOPMENT
DEPARTMENT

11

SHIP PERFORMANCE AVIATION AND
DEPARTMENT SURFACE EFFECTS

DEPARTMENT
15 16

STRUCTURES COMPUTATION
DEPRTRENT MATHEMATICS AND
DEPARTMENT LOGISTICS DEPARTMENT

17 18

SHIP ACPROPULSION ANDDEPARTMENT AUXILIARY SYSTEMS
DA EDEPARTMENT

19 27

SHIP MATERIALS CENTRAL
ENGINEERING INSTRUMENTATION
DEPkRTMENT DEPARTMENT

28 29

I'.4
* NO.... .. W DTNS DOC 396iO 43 qH~

IMI-T .AqqTFTRI
.ECUi'ITY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

I. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

DTNSRDC/CMLD-84/05 A "V f
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

PROGRAM DESCRIPTIONS FOR INTERACTIVE Interim Report
SIGNAL AND PATTERN ANALYSIS AND Sep 1979 - Sep 1980
RECOGNITION SYSTEM (ISPARS) S. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) B. CONTRACT OR GRANT NUMBER(O)

William Parsons James Carlberg
Joseph Garner Sidney Berkowitz

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

David Taylor Naval Ship Research and
Development Center (See Reverse Side)
Bethesda. Maryland 20084

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Naval Sea Systems Command March 1984
Materials and Mechanics Division 13. NUMBER OF PAGES
Washington, DC 20362 138

14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) IS. SECURITY CLASS. (of thie report)

UNCLASSIFIED

15s. DECLASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

17. DISTRIBUTION STATF.MENT (of the abstraect entered In Block 20, If different from Report)

'8. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse aide If nececeesry and Identify by block number)

Signal Analysis Interactive Graphics
Pattern Recognition Waveform Processing
Spectral Analysis

20. ABSTRACT (Continue on reveree side If noceeary and Identify by block number)

-) The Interactive Signal and Pattern Analysis and Recognition System
(ISPARS) is an integrated package of interactive graphics softuare and signal
and pattern analysis programs for visualizing and exploring sampled data*
streams and designing pattern logics. This report contains detailed

* descriptions of the subroutines, files, and linking'ptoc'dures forthe ISPARS
components developed at the David Taylor Naval Ship Research and Development

I/ Center (DTNSRDC) which are not documented in other DTNSRDC reports.

DD I JAN73 1473 EDITION OF I NOV65 IS OBSOLETE UNCLASSIFIED
S Ol I11r-).LF.014.6601

SECURITY CLASSI"C 4T :-N OF THIS PIAGE (Wh n Dote Eittre4)

__ _ ___ _ __ _ _

UNCLASS IFIED
SECURITY CL. 90V1FICATION ') THIS PAGE (Wen Deis Entered)

(Block 10)

Program Element 61153N
Project SR01403
Task Area SR0140301
Work Unit 1808-010

i Accession For

NTIS q.RA&I
>1)DTIC TAB

Unannounced 0A Justificatio

By.
Distribution/

Availability Codes
:Avail and/or

1T1IT qTVTMT
31071.1111Ty CLASSIFICATION OP-THII PAGEM14*e' Offs nterad)

TABLE OF CONTENTS

Page

LIST OF FIGURES AND TABLE iii

ABSTRACT 1

ADMINISTRATIVE INFORMATION 1

INTRODUCTION 1

PROGRAM VU 2
VU Subroutine Descriptions 3
VU File Descriptions 74
VU Linking Procedure 77

PROGRAM SELECT 79
SELECT Subroutine Descri tons 80
SELECT File Descriptions 109
SELECT Linking Procedure 112

PROGRAM WAVAN 113
WAVAN Routine Descriptions 114
WAVAN File Descriptions 130
WAVAN Linking Procedure 132

REFERENCE 133

LIST OF FIGURES

1 - Subroutine CREAT1 Flowchart 6

2 - Subroutine CREAT2 Flowchart 8

3 - Subroutine FATPK Flowchart 15

4 - Subroutine KINSRT Flowchart 19

5 - Subroutine KLASIT Flowchart 22

6 - Subroutine KLOOK Flowchart 25

7 -Subroutine LEV Flowchart 318 -Suroutine RGKFowchr.................................3

8 - Subroutine MRGPK Flowchart 37

19 - Subroutine NARPK Flowchart 37

10 - Subroutine NONLEV Flowchart 41

' 14 - Subroutine QVUCSI Flowchart 58

15 - Subroutine SEARCH Flowchart 62

16 - Subroutines UPDAT and UPDAT2 Flowcharts 66

1/

- . - , -i + -- _. ,- ,7 1 ..iii

Page

17 - Relative Ages of UPDAT and UPDAT2 Parameters67

18 -Subroutine WAMSER Flowchart. 72

19 - BATCH File to Link VU 78

20 - Subroutine SETF3 Flowchart. 105

21 - Program SELECT Linking Procedure. 112

22 - Subroutine TEST Flowchart 119

23 - WAVAN Linking Procedure 132

TABLE D1-SELECT Comands.... 82

iv

ABSTRACT

The Interactive Signal and Pattern Analysis and
Recognition System (ISPARS) is an integrated package of
interactive graphics software and signal and pattern
analysis programs for visualizing and exploring sampled data
streams and designing pattern logics. This report contains
detailed descriptions of the subroutines, files, and linking
procedures for the ISPARS components developed at the David
Taylor Naval Ship Research and Development Center (DTNSRDC)
which are not documented in other DTNSRDC reports.

ADMINISTRATIVE INFORMATION

This work was completed in the Computer Science and Information Systems

Division of the Computation, Mathematics, and Logistics Department under the

sponsorship of NAVSEA 03F, Task Area SR 0140301, Task 15321, Element 61153N.

INTRODUCTION

The Interactive Signal and Pattern Analysis and Recognition System

(ISPARS) is an integrated package of interactive graphics software and signal

and pattern analysis programs for visualizing and exploring sampled data
1'

streams and designing pattern logics. An ISPARS User's Guide presents the

conceptual descriptions and functional guide to the system. This report is a

companion to the User's Guide and contains detailed descriptions of the sub-

routines, files, and linking procedures for the ISPARS components developed at

the David Taylor Naval Ship Reserach and Development Center (DTNSRDC), which

are not documented in other DTNSRDC reports.

, ISPARS deals with two areas of data analysis: The processing of sampled4 fsignal waveforms and the determination of pattern classes into which waveforms

may be separated. Signal analysis encompasses segmentation, spectral decompo-

sition, filtering, normalization, and characterization of signals. It

provides insight into the physical sources of signal components and the identi-

fication and extraction of significant features in the signal. The pattern

analysis procedures enhance the understanding of pattern relationships and

permits the construction of classification criteria for recognition schemes.

ISPARS integrates these analysis techniques into a set of interactive graphics

I A complete list of references is given on page 133.

. . ../ I | . . . '=; " 1

_ . .-r- .. ".. .L - -..

programs which provide convenient, flexible means of visualizing, exploring,

and analyzing a sampled data stream controlled through a simple, concise

command language.

This report is divided into three main sections corresponding to three

subsystems of ISPARS: VU, SELECT, and WAVAN. Each contains program

descriptions, file descriptions, and the linking procedure used in program

development. The remaining subsystems and com nents of ISPARS are documented

in other reports.
2 '3'4

PROGRAM VU

VU is an interactive, general purpose program for the examination and

analysis of digitized signals. VU runs on a PDP 11/45 minicomputer system

with a VT11 processor supported by the RT-11 operating system. Digitized data

are stored on disk or magnetic tape as an infinite data stream, and a graphics

display monitor is used to show results of analyses, spectral decomposition,

peak-picking, and smoothing. A functional description of VU and its command
1

language is contained in the ISPARS User's Guide . This section presents, in

alphabetical order by subroutine name, the subroutine descriptions, input/

output, files, and linking procedures associated with program VU.

2

K. ___

VU SUBROUTINE DESCRIPTIONS

SUBROUTINE NAME ADJUST

PURPOSE To display and alter parameter values for VU.

DESCRIPTION

INPUT

OUTPUT

CALLED BY VU GRAPHICS? Yes

SUBROUTINES CALLED AJISUB DISK I/O? Yes

CALLING SEQUENCE CALL ADJUST [DPO:OPARAM.DAT]

SUBROUTINE NAME AJISUB

PURPOSE To display parameters for ADJUST.

DESCRIPTION

INPUT

OUTPUT

CALLED BY ADJUST GRAPHICS? Yes

SUBROUTINES CALLED None DISK I/O? No

CALLING SEQUENCE CALL AJISUB (AMPMIN, SFREQ, LOGPOW, AMPBEG, BAND, PERHI,

PERLO)

SUBROUTINE NAME BESSEL

PURPOSE To calculate a modified Bessel function.

DESCRIPTION

INPUT

OUTPUT

CALLED BY POCALC GRAPHICS? No

SUBROUTINES CALLED None DISK I/0? No

CALLING SEQUENCE CALL BESSEL (XUA-UUE, ZSUM)

3

SUBROUTINE NAME CHANGE

PURPOSE To change KLASIT parameters.

DESCRIPTION CHANGE is a FORTRAN subroutine which receives a change parameter

command and new value as arguments and changes the specified parameter value

contained in common block/PARAMS/. CHANGE also displays the new parameter

value and erases all displays associated with the parameter before returning to

the calling program.

INPUT

Arguments

CMAND 3 - first letter of command. Valid letters are "N", "L", "I", "P",

and "Q".

NUM3 - second character of command; will be a number 1, 2, or 3

referring to parameter set 1, 2, or 3.

ZNUM3 - new floating point value of specified parameter

OUTPUT New parameter value displayed along with other parameters in its

parameter set.

CALLED BY KLOOK

SUBROUTINES CALLED None

CALLING SEQUENCE CALL CHANGE (CMAND3, NUM3, ZNUM3)

SUBROUTINE NAME CHINFO

PURPOSE To obtain channel information from the user and supply it to VU.

DESCRIPTION

INPUT

OUTPUT

CALLED BY VU GRAPHICS? No

SUBROUTINES CALLED SHOUT DISK I/O? No

CALLING SEQUENCE CALL CHINFO (ICHAN, OCHAN, NCHAN, ZLASL, FILSIZ, CMAND1)

/4
H /
1/

SUBROUTINE NAME CREATI

PURPOSE To calculate the unsmoothed noise from the results of applying

KLASIT to the original data.

DESCRIPTION Subroutine CREATi obtains an estimate of the noise contained in

the original data by examining the results of the first application of sub-

routine KLASIT to the original data. The rise, level, and fall forms generated

by KLASIT are contained on disk file DPO:UNSMOO.DAT. The ou4 - irray RUFF is

filled in with a constant noise level associated with each f with the

index to RUFF beginning at the start time for the form and r ing up to (but

not including) the start time for the next form. A zero nol associated

with all level forms and any rise or fall with durations exceuing QI points

where QI and QO are input parameters. For short rises or falls of duration

less than QO, the noise is taken to be the entire absolute change in level.

For durations between QO and QI the noise is a percentage ((Q1-duration)

divided by (QI-QO)) of the change in level. The flowchart for CREATI is shown

in Figure 1.

INPUT

Arguments

QO, Q1 - duration parameters QO<Q1

Disk

DPO:UNSMOO.DAT - file containing KLASIT approximation to original data

OUTPUT

Arguments

RUFF - 1024-point array containing the unsmoothed noise estimate

, CALLED BY KLOOK

* SUBROUTINES CALLED None

* CALLING SEQUENCE CALL CREATI (RUFF, QO, Q1)

'I

'

* I

CREATI

ASSIGN INPUT FILE
TO DPUI4NSWI.OAT

READ # FORMS
ON FILE

READ INITIAL
FORM

* ~ ~ ~ ~ ~ ~ ~ RA / iue1-SbotNeEXTi Flowhar

-6j0 6+.

SUBROUTINE NAME CREAT2

PURPOSE To construct the noise array from the smoothed estimate of the

noise.

DESCRIPTION Subroutine CREAT2 examines the smoothed estimate of the noise

produced by KLASIT on file DPO:SMOO.DAT and computes a final estimate of the

noise array. For all points contained in a level form, the noise is set to

one-half the magnitude of the levol. For points in a rise or fall the noise

is obtained from a straight line interpolation between the levels divided by

two. The division by two is to account for positive and negative values. The

flowchart for CREAT2 is shown in Figure 2.

INPUT

Disk

DPO:SMOO.DAT - file containing KLASIT approximation to unsmoothed noise

estimate

OUTPUT

Arguments

NOISE - A 1024-word array contining final smoothed estimate of noise

contained in original data

MXSMOO - twice maximum value of noise array

Printout: Noise array and MXSMOO

CALLED BY KLOOK

SUBROUTINES CALLED None

CALLING SEQUENCE CALL CREAT2 (NOISE, MXSMOO)

SUBROUTINE NAME DISKRD

PURPOSE To fill ARRAY with data from a specified disk file.
*1

DESCRIPTION

INPUT

OUTPUT

CALLED BY (KLOOK, VU, SEARCH) GRAPHICS? No

SUBROUTINES CALLED REEDTR DISK I/O? Yes

[DPO:TRAKS2. DAT]

CALLING SEQUENCE CALL DISKRD (ARRAY, TRKNUM, CMAND4, NUM4, ZNUM4)

!7

/ 4,

OREAT2

TO PAOOTHED ESTATE

cOF OSE PT

SMOOTHED NOSPXMO
I ~~~~~E Figur 2O -T Surutn RM2Fowhr

FRM IL

OR8 ~

ASSIGN~~~- END VAU OF FO INEROUTE-r

SUBROUTINE NAME DSPIT1

PURPOSE To display the unsmoothed noise array.

DESCRIPTION DSPIT1 calls subroutine NEWVEC in creating a subpicture display

of the unsmoothed noise array which it receives as an input argument. The

subpicture is turned on and a copy of the subpicture is made to be displayed

at a higher point on the screen should the "merge" command be given to KLOOK.

Finally, DSPIT1 will turn off the unsmoothed noise display if the last command

given is a D3 or any non "D" command. The final status of the unsmoothed

noise display and its copy are returned in variables BRUFF and TRUFF of common

/DCHEK/.

INPUT

Arguments

RUFF - a maximum 1024-point array containing the unsmoothed noise data

LNTH - length of RUFF

Common

/CMNDS/

CMAND3 - 1st character of last user command

NUM3 - 2nd character of last user command

/SCALE/

ZR - small factor

OUTPUT

Common

/DCHEK/ BRUFF, TRUFF - status variables of unsmoothed noise display and

its merge copy

2 CALLED BY KLOOK

SUBROUTINES CALLED NEWVEC

CALLING SEQUENCE CALL DSPITI (RUFF, LNTH)

,I

SUBROUTINE DSPIT2

PURPOSE To display the smoothed noise.

DESCRIPTION DSPIT2 reads from disk the results of subroutine KLASIT

operating on the unsmoothed noise (sequence of rise, level, and fall waveforms

referred to as the smoothed noise). By computing y-differences and cycling

through calls to subroutine NEWVEC, DSPIT2 generates a subpicture display of

the unsmoothed noise which is placed in the top part of the screen and

assigned the status variable and tag TSMOO. Before returning, the smoothed

noise display is turned off unless the last user command was "D2".

INPUT

Disk

DPO:SMOO.DAT - FORTRAN direct access file containing up to 1024 records of

three words each where each record represents a waveform

approximation by KLASIT. Each triplet consists of form,

start point, and amplitude value.

The number of forms is contained in the only word stored in record 1024.

Common

/CMNDS/

CMAND3 - 1st character of user command

NUM3 - 2nd character of user command

OUTPUT

Common

*/DCHEK/TSMOO - status variable of smoothed noise display

CALLED BY KLOOK

SUBROUTINES CALLED NEWVEC

CALLING SEQUENCE CALL DSPIT2

.1

-1

. 10

SUBROUTINE NAME DSPIT3

PURPOSE To display the final smoothed approximation to the original data

DISCRIPTION DSPIT3 reads from disk file DPO:FINAL.DAT the final KLASIT

results consisting of the smoothed approximation to the original data. DSPIT3

reads the KLASIT waveform sequence, computes x and y differences, and calls

NEWVEC to generate the (error corrected) subpicture display. The picture is

turned on and assigned the tag and status variable, BFINL. In anticipation of

the "merge" user command, a copy of the subpicture is made but not displayed

and assigned the tag, TFINL. The picture is left "on" unless the last user

command was W or X.

INPUT

Disk

DPO:FINAL.DAT - A FORTRAN direct access file with 1024 records; last

record is number of forms and other records are triplets

consisting of form, start point, and value.

Common

/ CMNDS/

CMAND3 - 1st character of user command

NUM3 - 2nd character of user command

OUTPUT

Common

/DCHEK/

BFINL and TFINL status variables of final smoothed approximations display

and its copy, respectively.

CALLED BY KLOOK

SUBROUTINES CALLED NEWVEC

SCALLING SEQUENCE CALL DSPIT3

1 1

*IIi

* . --- -~ --- *- -

SUBROUTINE NAME DSPRAW

PURPOSE To display the original data.

DESCRIPTION

INPUT

OUTPUT

CALLED BY KLOOK, VU GRAPHICS? Yes

SUBROUTINES CALLED None DISK I/O? No

CALLING SEQUENCE CALL DSPRAW (ARRAY, TRKNUM)

SUBROUTINE NAME DTRMIN

PURPOSE To determine what command (in the smoothing control routine, KLOOK)

will produce the current display.

DESCRIPTION DTRMIN is a FORTRAN routine that checks the status of sub-

pictures that can be displayed under control of subroutine KLOOK. Each sub-

picture is associated with a variable in the /DNAMES/ common block. DTRMIN

tests the variables for those that are in the "on" status and returns with

CMANDQ and NUNQ arguments set to the characters that would generate the

displays that are currently "on".

INPUT Common /DNAMES/ display state variables for subpicture

OUTPUT

Arguments

CMANDQ - The letter ("W", "X", or "D") which will generate the proper

display in KLOOK

NUMQ - The accompanying number (1, 2, or 3) completing the command

.4 CALLED BY KLOOK

SUBROUTINES CALLED None

CALLING SEQUENCE CALL DTRMIN (CMANDQ, NUMQ)

4

11

SUBROUTINE NAME FATPK

PURPOSE To determine whether a peak found by PEAKPK is too broad.

DESCRIPTION The particular peak which this routine examines is located at

LMAX, and the surrounding minimums are at LASMIN and LMIN (with LASMIN <

LMIN). The flowchart for FATPK is shown in Figure 3.

Starting at LASMIN and heading to the right toward LMAX, set LI = the

first location (frequency bin) which satisfies one of the following two

conditions:

(a) the amplitude at this location exceeds

PERHI * (amplitude at the peak)

or

(b) the amplitude at the location exceeds

PERLO * (amplitude at the peak)

and

(amplitude at this location)
(amplitude at previous frequency bin)

Note that (a) is a simple amplitude requirement, while (b) has a less

restrictive amplitude requirement (since PERLO < PERHI) but adds a condition

on the slope or the speed at which the maximum is approached.

If this peak must be split into two peaks, Li will be the location of the

leftmost peak. To locate the peak on the right, start at LMIN and travel to

the left toward LMAX; set L2 = the first location satisfying (a) or (b) above.

Having determined the "beginning" (Li) and the "end" (L2) of this peak,

compare the width L2-L1+1 with the width needed for a broad peak (ZBROAD). If

the peak is broad (>ZBROAD), set SPLIT .TRUE.; otherwise SPLIT .FALSE.

Return.

13

II

SUBROUTINE NAME FATPK (Cont'd)

INPUT

Arguments

ZSPEC - power spectrum array

TPTS - # points in power spectrum

L - current frequency location index

LMAX - location of last minimum

LASMIN - last value of LMIN

OUTPUT

Arguments

Li

- estimated locations of the two peaks into which a "fat peak" should

be split

L2

SPLIT - flag set to .TRUE. if the peak in question is too broad

CALLED BY PEAKPK

SUBROUTINES CALLED None

CALLING SEQUENCE CALL FATPK (ZSPEC, TPTS, L, LASMIN, LMAX, LMIN, SPLIT, Li,

L2, PERK, PERLO, FACTOR, ZBROAD)

.4

14

ai

FATMI

RND BEGIN. PERI, MER, AND)NING (W FACO ARE USEDPEAK- MAL IT IN [ERMING
LI LI AND LW

FIND END OF
PEK CALL IT

L1

SET WIDM=
L2-L1+1

Is

Figure 3 - Subroutine FATPK Flowchart715

SUBROUTINE NAME FFTDSP

PURPOSE To calculate and display the real and imaginary parts of the FFT.

DESCRIPTION

INPUT

OUTPUT

CALLED BY VU GRAPHICS? Yes

SUBROUTINES CALLED FOUREA DISK IO? No

CALLING SEQUENCE CALL FFTDSP

SUBROUTINE NAME FILLIT

PURPOSE To fill ARRAY with Pioi)PY points from a specified disk file

starting at the point (in the disk file) designated ZFILEP.

DESCRIPTION

INPUT

CALLED BY LOCATE GRAPHICS? No

SUBROUTINES CALLED None DISK I/O? Yes

[User's data file]

CALLING SEQUENCE CALL FILLIT (ICHAN, XFILEP, INCRE, ARRAY)

SUBROUTINE NAME FOUREA [in FOUREA1, MAC]

PURPOSE FOUREA is the Fast Fourier Transform (FFT) routine.

'* DESCRIPTION

INPUT

OUTPUT

CALLED BY FFTDSP, POCALC GRAPHICS? No

SUBROUTINES CALLED None DISK I/O? No

CALLING SEQUENCE

16

.17

SUBROUTINE NAME KCMNDS

PURPOSE To operate in conjunction with KLOOK to handle KLASIT level user

commands.

DESCRIPTION KCMNDS is a FORTRAN subroutine which turns on, turns off,

erases, and checks status of displays specifically associated with the

smoothing operations on input data. KCMNDS is called by subroutine KLOOK for

the "D", "W", and "M" commands and all forms thereof. KCMNDS checks the

current display status and turns on the requested displays if they are not

already on or turns them off if they are already on. If the subpicture

associated with a requested display does not exist in the display, KCMNDS

returns to KLOOK with the control parameter LINE set appropriately to direct

KLOOK to call the necessary level of the smoothing process to generate the

required display. To direct KLOOK properly, KCMNDS determines the present

state of the display by checking the status of the subpictures and erasing

undesired displays and displays that must be regenerated.

INPUT

Arguments

CMAND3 - First character of input command

NUM3 - Number following first character of the user command input

Common

/DNAMES/ - list of graphics tags assigned to each subpicture (integers

running from 1 to 20)

/DSTAT/ - contains display status array, DCHEK, which records status of

each subpicture (on, off, erased)

OUTPUT

Argument

*1 LINE- integer variable containing values from one to eight to indicate

a branches in KLOOK control structure. Direct KLOOK to various stages

of smoothing process.

*Common

/DNAMES/ cf. INPUT

/DSTAT/ cf. INPUT

CALLED BY KLOOK

SUBROUTINES CALLED PRAMTR

CALLING SEQUENCE CALL KCMNDS (CMAND3, NUM3, LINE)

17

SUBROUTINE NAME KINSRT

PURPOSE This routine places a new form into the KLASIT output file (after

determining that the form being output is not a duplicate).

DESCRIPTION If the form is the first one (INDEX = 0), KINSRT increases

INDEX to 1, sets the 3rd column (KCOL3) equal to the amplitude at the position

indicated by the second column (KCOL2), and returns.

If the form is not the first, KTEST is examined to see if it will be

necessary to check for a duplicate entry. If KTEST = .TRUE., this form is

compared with the previous form, and if they are the same a return is made

without increasing INDEX by 1. If KTEST .FALSE. (which happens only on the

first and last two forms), no check is made.

After surviving the duplication check, the form is definitely going to be

entered into the output, so INDEX is increased by 1. If the form is a level,

it is entered directly into the output, and the previous form is changed so

that the third column (the value at the endpoint of the last form) is set to

the value of the level. (This modification makes certain that the levels are

truly flat and not slightly inclined.) If the form is a rise or fall, the

third column is changed by setting it equal to the value at the endpoint

(KCOL3 = S(KCOL2)), and then the form is output.

The flowchart for KINSRT is shown in Figure 4.

INPUT

Arguments

* S - original data, possibly modified by routine NAROPK; and array

dimensioned 1024

INDEX - # of forms already on output file

KCOL1 - first number of form = +1 for rise, -1 fpr fall, 0 for level

KCOL2 - second number of form = endpoint of rise, level, or fall

KCOL3 - last number of form = value at endpoint

KTEST - If KTEST = .TRUE., KINSRT will test to see if a duplicate form is

about to be entered.

OUTPUT (DISK) A new entry is sometimes placed on the direct-access file 79

(which may be DPO:UNSMOO.DAT, DPO:SMOO.DAT, or DPO:FINAL.DAT).

CALLED BY KLASIT, LEV, NONLEV

SUBROUTINES CALLED None

CALLING SEQUENCE CALL KINSRT (S, INDEX, KCOL1, KCOL2, KCOL3, KTEST)

18

NO

NOCHECK
MRN DUJ9CAYE

READ IN
LAST 101WA

ANOS COMPARE
WVITH THIS ONdE

SAME

FIgr '4 - urotneK RTFowhr

FIRS
FOR19

DINA R

SUBROUTINE NAME KLASIT

PURPOSE To characterize a time series of digital data by a sequence of

elementary waveforms consisting of rises, falls, and levels.

DESCRIPTION KLASIT reads a series of as many as 1024 values from disk, ini-

tializes variables, and cycles through subroutines LEV, NONLEV, NAROPK, and

KINSRT to approximate the input data with a sequence of rise, fall, or level

waveforms. Each waveform is described by a number triplet and is stored on

disk by KINSRT in the order of occurrence. The first number of the triplet is

-1, 0, or +1 for fall, level, or rise, respectively. The second number is the

index in the original data of the endpoint of the form, and the third number

is zero for rise or fall or, for a level, the amplitude of the level. KLASIT

works through the raw data input by calling LEV or NONLEV, depending on the

possibility of a level form existing at the current data index. Special proc-

essing, in the form of a call to NAROPK, is performed to ensure the validity

of rises or falls occurring at the end of data.

KLASIT maintains a list in COMMON/PRAMI/ of the variables characterizing

the current state of the processed data. These are key values associated with

the current waveform indicating its type, bounds, and level. As new forms are

encountered, KLASIT maintains a history of the parameter sets for each of the

two forms preceding the current form through calls to UPDATE and UPDAT2. This

history allows the waveform approximation routines, specifically NAROPK, to

eliminate forms and to BACKTRACT and reprocess data to achieve smoother

approximations to the input data. The KLASIT flowchart is shown in Figure 5.

INPUT

Arguments

LENGTH - length of the input data

* S - input data vector

NABR - vector threshold for level

LEVEL - duration threshold for level

IBAND - constant threshold for significant change in level

P - narrow peak threshold

WHICHI - parameter indicating the file which is to receive output forms

I. DPO:UNSMOO.DAT

2. DPO:SMOO. DAT

3. DPO:FINAL.DAT

20

ILA

SUBROUTINE NAME KLASIT (Cont'd)

OUTPUT

DISK

DPO:KLSINP.DAT - contains LENGTH and S as they are input to KLASIT

DPO:UNSMOO.DAT -

DPO:SMOO. DAT as indicated by input parameter WHICHI

DPO:FINAL.DAT - contains output sequence of waveforms (a FORTRAN direct-

access file containing 1024 three-word records. Record

1024 contains only the number of forms on file)

CALLED BY KLOOK

SUBROUTINES CALLED KINSRT, UPDAT, UPDAT2, LEV, NONLEV, NAROPK

CALLING SEQUENCE CALL KLASIT (LENGTH, S, NABR, LEVEL, IBAND, P, WHICHI.)

21

4 jW

XLAW

"TWO
VARMBLES

AND DEPIME
OUTPUT FILE

UPDAT2
UPOATI

PUT ORWAW
ARRAY ON MOVE TO

OIWSK TO SAVE MEXT
IT WORK SAMPLE

MTN A COPY L=L+l

UPOW
§70

Owl YES
PLACE LAST CLOSE
OME OR TWO OUTPUT AND

OUTPUT ARRAY BACK
IN

NoPOAT2

ROWS WO - 110, READ OR*AW

JEWWAEI'M
AMPUTU% RETUN
AT I W' TH
AMPLITUDE

"T1

IS
101IFFEREWEj YES
S NABWU7

520 NO 33

POSSIBLE RISE
OR FALL. SO POSSIBLE

CAL SO CALL
LEY

(OON7 KNOW YET)

No WW NOW ON
LEV10 RISE DR FALL?

40 moor KWW YM

NO OWOME? YES

Figure 5 Subroutine KLASIT Flowchart

22

SUBROUTINE NAME KLOOK

PURPOSE To control KLASIT smoothing process and associated displays.

DESCRIPTION The FORTRAN subroutine, KLOOK, is the main control routine for

the KLASIT smoothing process and related display routines. The user has the

option of examining either the original (raw) data or a particular track

created by the tracking routines of SELECT. KLOOK accepts all KLASIT commands

through calls to QVUCSI and directs program Qow accordingly. KLOOK accepts

the same data movement commands ("F", "B", "J", "S", and "<CR>") as does VU

and moves all displays that are currently on the screen as directed. In

addition, the "Q7" and "G" commands in KLOOK have the same effect as they do

in VU. The commands peculiar to KLOOK are the "Pn", "Ln", "In", "Nn", and

"Qn" comamnds for changing KLASIT parameters and the "ID" and "Wn" commands

for displaying various stages and combinations of raw data, noise, and

smoothed signals. All commands eventually cause KLOOK to cycle back to the

call to QVUCSI and look for further commands - the "E" and "K" commands being

the means of escaping the KLASIT smoothing module.

When parameters are changed, DTRMIN is called to determine what data are

currently displayed and KCMNDS is called to turn off all displays but the

original data and set the KLOOK control parameter, LINE, to one or two as

needed to effect the proper regeneration of the displays affected by the

parameter change.

If a "D" or "W" type command is entered, KCMNDS is called to turn on the

requested displays. If the displays exist, KCMNDS returns to KLOOK and KLOOK

looks for the next command. If the displays don't exist, KCMNDS returns with

the LINE parameter set appropriately to generate the requested displays and

*KLOOK transfers accordingly. As outlined in the flowchart in Figure 6, KLOOK

can cycle through the entire smoothing process including smoothing the raw

data using constant noise, computing unsmoothed noise, smoothing the noise,

and computing a smoothed signal based on the smoothed noise. KLOOK also

affords the only entry to WAMSER which itself is the final process in the

smoothing sequence. See Figure 6 for flowchart of KLOOK.

23

L. J

SUBROUTINE NAME KLOOK (Cont'd)

INPUT

Common

/ARRAYS/ARRAY (1024) - original (raw) data

Keyboard

TRKNUM - if equal zero, then examine raw data, otherwise, this is the

number of the track that will be smoothed.

OUTPUT None

(Much of the input/output associated with KLOOK is effected by subroutines

called by KLOOK. For example, QVUCSI accepts all commands for KLOOK and

several display routines generate output.)

CALLED BY VU

SUBROUTINES CALLED CHANGE, CORDSP, CREATI, CREAT2. DISKRD, DSPIT1, DSPIT2,

DSPIT3, DSPRAW, DTRMIN, KCMNDS, KLASIT, PDATA, QVUCSI, TYPEIT, WAMDSP, WAMSER,

XYPLOT

CALLING SEQUENCE CALL KLOOK (PDRAW)

'I

'I

.. ._ , :

ERASE FFI b PE R
SPECTRUM

b 2AALT

PA~ RAW . UC

O UNDTA~a ~ 1SLa~ D

ERASE TR0 TRAM

TIRAN DATATA'E

GE " aSERASEORES DATA

COMAN

CMANX -

Figue 6 Suroutne LOOKFlowhar (1 f 3

25 SEAt

_____ AW_ AI

4 -x
OFTRACK-----.---.------

DATA

(rw

1

T
RECRA

L11=

LM26

.1AL KMJ

SET NWS TO
CONSTANT N2
OF PARAMS1

CALL KLASIT

APPLY PLANIT mTO1AD
ACUE MU1FF) TO GET

SMOTED NWS GMO)

CALL ISPIT2

CAAI M9lf
GETN NO& FROM

NMOOTHE TONOWSE

CALLON UML

APPMEON Y KAASE ALLON

CALL EMus~w EA AAEE

SISE'AY RALE

SMOOTH APPS X

V CALL TO

* R

Figure 6O OUPU Subouin GMO lwhat(3
OF /LSTETMT W*i4U

KLS1 27 WY TCAL

-'- -~- --- --- --- --- --- --- GRN PO TE

SUBROUTINE NAME KLOUT (KLAS, INDEX)

PURPOSE To output WAMSER results to a disk file for use by the waveform

processor.

DESCRI PTION

INPUT

OUTPUT

CALLED BY None CALLS None GRAPHICS? No

currently DISK I/O? Yes

SUBROUTINES CALLED [User-specified output

CALLING SEQUENCE file]

28

6-I

SUBROUTINE NAME LEV

PURPOSE To test for the existence of a level form and compute its average

value and endpoints.

DESCRIPTION Subroutine LEV tests successive elements of the input array

FTEMP until a value differs from the value of the start of the level by more

than NABR(L), thus signalling the end of the level. If the level width fails

to exceed the parameter LEVEL, no level is found and a return is made to

process the data as a rise or fall. If the width condition is satisfied, the

average value of the level is computed using the original data array, S. The

value of the pointer LB to the end of the preceding form is moved to LB1, and

LB itself is updated to the start point of this level (L-1) or to the first

element in S equal to the average value of the level, whichever comes first.

Subroutine NAROPK is called to eliminate narrow peaks if one has just been

created, and KINSRT is called to place the level data on disk. The flowchart

for subroutine LEV is shown in Figure 7.

INPUT

Arguments

LENGTH - Length of input array to be smoothed

S - 1024-word array containing data to be smoothed

FTEMP - 1024-word array copy of S. This array is analyzed by LEV.

(FTEMP contains smoothing modifications. S is never altered to

allow the program to restore analysis to pre-existing states.)

NABR - 1024-word vector threshold specifying minimum amplitude change

for end of level test

2 LEVEL - Threshold for minimal width of a level (in number of points)

Common /PRAM1/

L - current pointer to waveform data

29

SUBROUTINE NAME LEV (Cont'd)

OUTPUT

Arguments:

MGO - status indicator dictating further processing in KLASIT

0 means a narrow peak was eliminated and L is currently pointing to

a rise or fall

1 means level must be absorbed into preceding form

= 2 means end of waveform data - enter last two forms in KLAS

3 means a sharp rise after the level at end of waveform data

4 means end of data and enter last form in KLAS

Common /PRAM1/

L - points to beginning of next form in data

CALLED BY KLASIT

SUBROUTINES CALLED UPDAT2, NAROPK, KINSRT

CALLING SEQUENCE CALL LEV (LENGTH, S, FTEMP, NABR, LEVEL, IBAND, P, KLAS,

INDEX, MGO)

-'3

'I

~30

MOVE ALONG MAKE FTEMP

LEV LEVIEL: ARRAY FLAT: LW UPDAT2 TO
FTEMPHJ UPDATE "A"L+I FTEMPIJ - 1) PARAMET

NO

IS Dlffff COMPARE INCREASE
NABIKU? E FTEMP(Lj WITH WIDTH.

OF LEVEL FTEMP(LB) flMO=

J
YES

IWIO+ I

a

IS LEVEL
LONG ENOUGHb NO;Up

IS Will) RETURN

LEVEL7

SET K8 =
AVERAGE VALUE
OF THIS LEVEL

UPDATE LB TO
L-I OR TO THE
FIRST I SUCH

THAT Sill = KB

CALL NAROPK
TO CHECK FOR
NARROW PEAK

T=2

YES

T=I IT 1,2)

NO RETURN TO YES NARROW
RETURN LEVEL AFTER PEAKELIMINATING ELIMINATED'

PEAK?

NO

CALL KINSFIT TO
PLACE PRECEDING
RISE OR FALL INTO

OUTPUT

.4

CALL UPDAT TO
UPDATE "P" AND "0'

PARAMETERS

UPDATE
LAMM = I. I
LMAX = L - I
ITEST =0

Figure 7 Subroutine LEV Flowchart

31

SUBROUTINE NAME LOCATE (ZEVBEG, ZEVEND, ZDURAT)

PURPOSE To locate the beginnings and ends of events.

DESCRIPTION

INPUT

OUTPUT

CALLED BY VU CALLS FILLIT GRAPHICS? No

SUBROUTINES CALLED DISK I/O? Yes

CALLING SEQUENCE [DPO:OPDRAM.DATJ

- .3

' ! 32

/ . . .-

SUBROUTINE NAME MRGEPK

PURPOSE To merge peaks in PEAKPK if necessary.

DESCRIPTION This routine examines the peak numbered KP. From the output

array, the locations of this peak and the previous peak (number KP-1) are

determined. If the difference in frequency between these two locations is

greater than FMERGE, the peaks are too far away from each other to be merged

and a return is made.

If (on the other hand) the peaks are close enough together, they will be

merged provided their amplitudes are not too similar. The condition imposed

on the amplitudes is that the ratio of the smaller amplitude to the larger

amplitude must be less than HMERGE before a merge will be performed. If this

condition is not satisfied, a return is made.

If all conditions for a merge are satisfied, the location of the last peak

entered is given as the location of the taller peak, and the bandwidth is

equal to the sum of the original two. Before returning, the peak number (KP)

is reduced by one. The flowchart for MRGEPK is shown in Figure 8.

INPUT (Calling Sequence)

ZSPEC - power spectrum array

TPTS - # points in power spectrum

TMPOUT - output array containing peaks and bandwidths

KP - current peak number

FMERGE - if two peaks are separated by more than FMERGE hertz, they cannot

4 be merged

HMERGE - two candidates for merging are merged if the height of one is

-i less than HMERGE percent of the other

(DISK) -

OUTPUT (Calling Sequence)

KP - peak number is reduced by one if merge occurs

(DISK) -

CALLED BY PEAKPK CALLS None

SUBROUTINES CALLED

CALLING SEQUENCE CALL MRGEPK (ZSPEC, TMPOUT, TPTS, KP, FMERGE, HMERGE)

I

33

- _- -- -..- -

FIND
LOCATIONS
OF PEAKS
NKPl AND

NKP I)

FigureMIRG 8REub o ti eTUEK Fl w hR tHETZ

34

Is YES

SUBROUTINE NAME NAROPK

PURPOSE To eliminate narrow peaks as part of KLASIT's smoothing process.

DESCRIPTION The routine begins by setting the default condition T=O,

meaning that no narrow peak was eliminated. The variable T can take on two

other values to tell the calling program what it has done: if T=1, a narrow

peak was eliminated and the sample point under consideration is on a rise or a

fall; if T=2, a narrow peak was eliminated and the sample point now under

consideration is on a level.

A check is then made to see if a peak is really available for examination

-- this check is made by multiplying the form types (ITEST) for the current

form and the previous form to see if the result is -1; if it is not, one of

them is a level, or both are rises, or both are falls.

Once it is determined that the peak is there, the beginning (the endpoint

of the last form), the end (LB1), and the width (end-beginning-) are

determined. If the width is >P, the peak is not narrow and a return to the

calling routine is made; otherwise the routine continues.

If the peak is narrow, it is eliminated by obtaining amplitude values at

the beginning and end of the peak and replacing the intermediate values by a

straight-line interpolation between the endpoints. The results are placed in

both FTEMP (the working array) and S (the original data). [Note: If S were

not changed, calculations of the average level value in the routine LEV would

be thrown off, since the S array is used here.]

After zeroing out the last form entered into the output file (which may

not be necessary any more), the routine resets L (current sample point) to a

point just before the peak began (L BEGPK-1) and reduces the value of INDEX

by 2 (since two forms will be ignored).

If the routine has jumped back to a level, INDEX must be reduced again (by

1), since the rise or fall preceding a level is not entered into the output

until the level is.

The internal parameters (LB, LB1, KB, LMAX, LMIN, IWID, LTES, and ITEST)

are given the values they had when the routine was at this position earlier in

its execution. These old values may be found in the "P" parameters (PLB,

PLB1, PKB, PLMAX, PLMIN, PIWID, PLTES, and PITEST). [Note: In the special

case where INDEX cannot be reduced by 2 (i.e., at the beginning of the

1//

I 35

SUBROUTINE NAME NAROPK (Cont'd)

DESCRIPTION (Cont'd)

waveform, where INDEX <2), these parameters are reinitialized to their values

at the start of KLASIT, the final entry in the output is rewritten, and UPDAT

is called to reset the "P" and "Q" parameters. A return is then performed

with T=1.]

If the routine is now on a level, T is set = 2; otherwise T=1 and a return

to the calling routine is made. The flowchart of NAROPK is shown in Figure 9.

INPUT

Arguments

S - original data to be smoothed (possibly altered by previous

applications of NAROPK)

FTEMP - copy of the S array (dimensioned, like S, as 1024)

LENGTH - length of waveform to be smoothed (= # elements of S or FTEMP to

be used)

P - a peak with width <P is called narrow

KLAS - an array (dimensioned 3) holding information on a single rise,

level, or fall

INDEX - # of forms already written to output

Disk - Previous forms are read in from the output file

OUTPUT

Arguments

T - a parameter indicating (a) no narrow peak found (T=O)

4or (b) narrow peak eliminated, return to

rise or fall (T:1)

or (c) narrow peak eliminated, return to

level (T=2)

• INDEX - this parameter changes if a narrow peak is eliminated

Disk - The last form entered into the output file may be zeroed, and if

the narrow peak is eliminated at the beginning, a new first form

is entered

Commons - PRAM1, PRAM2, PRAM3, PRAM4, ZPRAM

CALLED BY KLASIT, LEV, NONLEV

SUBROUTINES CALLED UPDAT

CALLING SEQUENCE CALL NAROPK (LENGTH, S, FTEMP, P, KLAS, INDEX, T)

36

IL ________

. .*.t

SET T-0

NAROPK 4. NO HAS NONARROW PEAK BEEN
KAK FOUND FOUND?

YET

N' '0

YES

TAKE LOCATE LOCATE
DIFFERENCE BEGINNING

TO OETEfM E OF PEAK ENO OF

POINTS =ENMINT PEAK

IN PEM OF LAST
FORM USUALLY

NARWO? RETURN

+

is
IT

NO

YES

RND INTERIPOILATE
AMPLITUDES VALUES AND ALSO PLACE
AT START PLACE INTO THESE VALUES --- FZERO LAST

AND END ORM PLACEDTEMPORARY INTO ORIGIN& IN OUTPUTOF PEAK ARRAY FTEMP ARRAY S1

(THE 2 FORMS COMPRISING
M

R SING
THE PEAK ARE ELIMINATED)S 'OMPRE 4ELIMINATE

REDUCE
YES # FORMS AT RE INTIALUtRETUR" OUTPUT By No THE BEGINNING? YES PARAMETERS

PREVIOUS TO A 7 LEVEL 2 INDEX 2 SET T=I
0" EN F NO NO j1ES

FIkSE OR FALL INDEX INOEX 2 7 I-RISE OR FALU

YET, so SET

NO

RESET RETURN
PARAMETERS

T,TO 'r PARAMETERS ARE THE
PARAMETERS APPROPRIATE ONES FOR TWO FORMS BACKI

SET
T=I

RETURN URNING>N 00
TO RISE OR T A LEVEL RETURN

FAIL

YES

SET
T-2

YES44ETURN RETURN
TO LEVEL

T-0 ONO NAW0W PEAK
T-I :NARRDW PEAK EUIMINATEO. RETURN TO RISE OR FALL
1- 2 NARROW PW ELININATM, REHM TO LEVEL

Figure 9 - Subroutine NAROPK Flowchart

3

SUBROUTINE NAME NEWVEC (XDELTA, YDELTA, XERR, YERR)

PURPOSE To draw a vector with coordinates XDELTA and YDELTA, while keeping

track of cumulative errors.

DESCRIPTION

INPUT

OUTPUT

CALLED BY DSPIT1 CALLS None GRAPHICS? Yes

DSPIT2 DISK I/O? No

DSPIT3

NEXTI (from PASSBY)

PICTS

WAMDSP

SUBROUTINES CALLED

CALLING SEQUENCE

3

J3

SUBROUTINE NAME NONLEV

PURPOSE To test for a non-level form (rise or fall) and update extremum

points.

DESCRIPTION Subroutine NONLEV compares the wave value at the current wave

pointer, L, with the value at the last significant wave pointer, LB, to check

for a significant change in amplitude (greater than IBAND + NABR(L)). If

there is no significant change, the appropriate local minimum or maximum

pointer is updated and NONLEV returns to the calling routine.

If a significant amplitude change occurs (a rise or a fall), LB is backed

up to LB1 and reset to L and the appropriate minimum or maximum pointer is up-

dated. In addition, the state variable ITEST is set to -1 for a fall and +1

for a rise. If the preceding form is a level (ITEST=O) or the preceding form

is the same as the current form, NONLEV returns to the calling routine. If

the current form is a fall preceded by a rise, or vice versa, subroutine

NAROPK is called to verify the resulting apparent extremum. If NAROPK

eliminates a peak or valley, NONLEV returns without updating ITEST of the

max/min pointers. IF NAROPK confirms the validity of the extremum, NONLEV

calls subroutine UPDAT, updates the extremum pointer and ITEST, and calls

subroutine KINSRT to store the preceding form in the KLAS array. The flow-

chart for NONLEV is shown in Figure 10.

INPUT

Arguments

S - array containing original data to be smoothed

FTEMP - copy of S array which experiences some modification during

smoothing

NABR - vector threshold for significant amplitude changes

IBAND - a single-valued offset added to NABR to determine significant

change criterion

LENGTH - length of input S or FTEMP arrays

Common

/PRAM1/ L - current data pointer

LB - pointer to data at last significant change

LMAX - index of last maximum

39

' .

LMIN - index of last minimum

ITEST - state of last form

-1 - fall

0 - level

1 - rise

OUTPUT

Arguments

T - same as output argument from NAROPK

Common

/PRAM1/ updated L, LB, LMAX, LMIN, ITEST

CALLED BY KLASIT

SUBROUTINES CALLED NAROPK, KINSRT, UPDAT

CALLING SEQUENCE CALL NONLEV (S, FTEMP, KLAS, NABR, IBAND, INDEX, LENGTH,

P, T)

xl

'40

"I

/_ _

SEI COMPARE
T --0

NMEV ------ IDEFAULT) FTEMP
VALUES AT

RESET L AND If! INOT LARGE ENOUGH TO
JVVID I NfIII.MCA10 DEIERUNt

11 TO BE A RISE
OR FALL)

Is
DIFF LARGE UPDATE

JBAND OR
LMIN- I -- CHD

NABR(L)

+

fk o"7

NO

UVIALX
= I

UPDATE
BASE POINTS
1.81=18
UB-1

NOW ON UPDATE RETURNFALL YES (MIN I
PRECEDED BY ITEST I

LEVEL 7

NO

NOW ON YES UPDATE
RISE LMAUK -t

PRECEDED BY JEST .1
LEVEL?

NO

NOW ON YES UPDATEFALL =RERTUR-%
PRECEDED By [MIN I

FAIL

No RETURN

NOW ON YES CALL NARROW
RETURN RISE NAROPK PEAK YES

PRECEDED By TO CHM FOR ELIMINATED
FALII NARROW PEAK I

YES NO No

NARROW CALL NOW ON CALL UPDAT UPDATE
PEAK NARDPK YES FALL TO UPDATE 'P' [MAX t

ELIMINATED TO CHECK FOR PRECEDED BY AND D ITEST - - INARROW PEAK RISE 7 PARAMETERS

40 NO SO MUST BE ON RISE
PRECEDED BY RISE

CALL
UPDATEUPDAT UPDATE CALL KINWTO UPDATE LIVIN-1. EMAX TO OUTPUTAND **0'

THISPARAMETERS
RISE

CALL

RETURN KOW
TO OUTPUT THIS RETURN RETURN

FALL

Figure 10 Subroutine NONLEV Flowchart

41

SUBROUTINE NAME PDATA

PURPOSE To initialize KLASIT parameters depending on whether tracked data

or raw data are being examined.

DESCRIPTION PDATA tests argument TRKNUM and initializes the KLASIT

parameters contained in common blocks. For raw data (TRKNUM=O), only

parameters in /PARAMS/ are initialized. For tracked data, /PARAMS/ is

initialized to different data and also elements of /CHNLS/, /SCALE/, and

/CMNDS/ are changed to handle the tracked data.

INPUT

Arguments

TRKNUM - equal to zero to indicate raw data, otherwise, it is set to track

number

OUTPUT

Common

/PARAMS/ - new parameter values for KLASIT

/CMNDS/ - new values in case examining tracks

/SCALE/ - new ptsdpy (=50) and other values for tracks

/CHNLS/ - ZLAST = 0 if examining tracks

CALLED BY KLOOK

SUBROUTINES CALLED None

CALLING SEQUENCE CALL PDATA (TRKNUM)

.4

44

,I

I
(~

SUBROUTINE NAME PEAKPK

PURPOSE To select peaks in a power spectrum.

DESCRIPTION The routine begins by reading in the parameters to be used.

They are as follows:

(1) AMPMIN - For a point to be recognized as a peak, it must exceed in

amplitude (AMPMIN percent of) the average value of the power

spectrum.

(2) BAND - This parameter determines what is called a significant

change; a significant change must be greater than

(value at this index) + (value at last base) *BAND

2

(3) PERHI - This parameter is the percentage of the maximum (peak value)

required for the start or end of a peak.

(4) PERLO - This number is the percent of the maximum required before a

slope comparison with FACTOR can be made.

(5) FACTOR - This number is the minimum slope required for the start or

end of a peak if (PERLO * maximum) is exceeded.

(6) BWIDTH - A peak must be at least BWIDTH hertz wide before it is

resolved into two peaks.

(7) SFREQ - Peakpicking will begin at frequency SFREQ.

(8) FMERGE - If two peaks are separated by less than FMERGE hertz, they

are candidates for merging.

(9) HMERGE - Two candidates for a merge are merged if the height of one

is less than HMERGE percent of the other.

After reading in these parameter values, BWIDTH is immediately converted

to its equivalent in power spectrum sample points (called ZBROAD). After

initializing some variables, the average value of the entire power spectrum is

calculated and saved for later use. The starting frequency bin L is

determined from the parameter SFREQ, and the algorithm is ready to begin.

The power spectrum is scanned from left to right starting at the frequency

bin corresponding to SFREQ. The frequency bin index L is repeatedly updated

by I as the algorithm proceeds; this index is trailed by another index (LB) -

the "last base" - which is updated to L every time a change of direction is

/4/

,! 43

, I

_ " _ _ _2..._,,, - • : -: :;: -

SUBROUTINE NAME PEAKPK (Cont'd)

DESCRITPION (CONT'd)

encountered. At each step, values of the last maximum (LMAX) and last minimum

(LMIN) are available, and a third variable (ITEST) keeps track of whether the

index L-1 is on a rise (ITEST = 1) or a fall (ITEST = -1).

At each step, it is determined if a "significant change" has occurred.

This significant change is defined by the requirement that

/difference between values at L and LB/ > average of values * BAND

at L and LB

Incidentally, a little algebra shows that this condition is equivalent to

2 + BAND
/log (value at L) - log (value at LB)/ > log 2 - BAND

If no significant change is encountered, the routine moves on, updating

LMAX and LMIN. If a significant fall occurs, LMIN is updated, ITEST is set to

-1, and the routine moves on. If a significant rise occurs, LMAX is updated,

ITEST is set to +1, and the routine may or may not move on. It moves on along

the power spectrum only if the last direction of the power spectrum was also a

rise; if it was a fall, then a minimum has been found.

This routine locates a peak by finding the minimum values on either side

of it.

Once a minimum is found, the routine decides that between this minimum

(LMIN) and the last minimum (LASMIN = last value of LMIN) there is a peak (at

LMAX) to be examined. If this peak is not high enough - meaning its amplitude

must be > AMPMIN percent of the average value of the power spectrum -- then it

is ignored and the routine proceeds as before.

If the peak is high enough, FATPK is called to determine if the peak is

broad enough to warrant being split into two separate peaks (PERHI, PERLO,

FACTOR, and ZBROAD are used by FATPK). If the peak is split, both peaks are

entered into the output array, the appropriate parameters are updated, and the

program continues as before.

If the peak is not broad enough to be split, the subroutine MRGEPK (which

uses HMERGE and FMERGE) is called to determine if it should be merged with a

previous peak, and to "merge it" in the output array if necessary. If no

merger occurs, the single peak is placed in the output array.

44

. - .,I I.I

SUBROUTINE NAME PEAKPK (Cont'd)

DESCRITPION (CONT'd)

The routine continues in this way until 1) the end of the power spectrum

is encountered, or 2) the specified number of peaks (=NOP < 10) is found. The

flowchart for PEAKPK is shown in Figure 12.

NOTE ON BANDWIDTHS: Currently PEAKPK determines a bandwidth for each peak and

places it in the array TMPOUT along with the location of the peak. However,

bandwidth is not used at the moment and so only the location information in

TMPOUT is sent back from PEAKPK.

Here's how the bandwidths are calculated: the parameter PABOVE (not

user-controlled at this time) determines the value of the bandwidth, depending

on what the program has calculated for the beginning and the end of the peak.

Instead of taking B to represent the bandwidth of the peak in Figure 11a,

the shaded triangle shown in figure 11b can be divided into two parts by a

solid line in such a way that the area in the triangle above the dark line

divided by the total area of the triangle is PABOVE.

(a)

I I IAMPLITUDEI

* BFREQUENCY
B

.4 (b)

AMPLITUDE
ABOVE SPECIFIES TE %]

8lAREA LYING ABOVE THE/
___________________________LII JE T

SFREQUENCY

I A Figure 11 - Peak Bandwidth

45

i 0,

SUBROUTINE NAME PEAKPK (Cont'd)

DESCRIPTION (Cont'd)

Since small area 1/2 ab sin 0 a b b 2
large area 1/2 AB sin 2 PABOVE, the

bandwidth b is defined by b = B PABOVE. This formula is used to calculate

bandwidths for all the peaks found by PEAKPK, but the information remains in

PEAKPK and is not used.

INPUT (Calling Sequence)

ZSPEC - power spectrum array (dimensioned 512)

TPTS - number of points in this power spectrum

(DISK)

Appropriate parameters (BAND, PERHI, PERLO, FACTOR, FMERGE, HMERGE,

BWIDTH) are read in from DPO:OPARAM.DAT.

OUTPUT (Calling Sequence)

JNKOUT - output array (dimensioned 10)

(DISK) -

Commons: Scale

CALLED BY POWDSP, SEARCH CALLS: FATPK, MRGEPK

SUBROUTINES CALLED

CALLING SEQUENCE CALL PEAKPK (ZSPEC, TPTS, JNKOUT)

I

46

'I . - ,

MOVE TO

PEAXPK INITIA10 NEXT YES
v~ Es 7 t OONE7 RETUFN

(COMPARE VALUE AT I MTN
VALUE AT LB)

UPDATE No SIGNIFICANT
dq LMAX CHANGE

LMIN 7

YES

UPDATE
LAST BASE
LB=L

UPDATE
FALL RISE ORLMIN

AND SET FAI.0
ITEST 1

(RISE PRECEDES RISE
HISE)

UPDATE WAS
LMAX YES THE LAST

AND SET SIGNIFICANT CHANGE
ITEST A RISE 7

NO ISO NOW HAVE FOUND ANOTHER
MINIMUM POINT)

UPDATE UPDATE WES
LASMIN LMALX No PEA% EXCEED

TO THE URRENT
MINCMLIM AND SET MINIMLIM

LIAN ITEST + I AMPLITUDE

ISO HAVE ACCEPTABLE
YES PEAK OR PEAKS)

DETERMINE
EFFECTIVE

WIDTH OF PEAK. (TO DETERM64E WIDTH USE
IT STARTS AT PERHI, PERLO. AND FACTOR)
LI AND ENDS

AT U,

NO IS THE
PEAK WIDE ENOUGH7

L2 il +I i KBRO
7

I PEAK S.
INTER ER 0
LMAX AND L2 INTO

INTO OUTPUT OUTPUT

UPDATE
um 100 YES

AND SET OUTPUT R.Itt7 RETURN

Figure 12 Subroutine PEAKPK Flowchart

4.7

SUBROUTINE NAME PICTS

PURPOSE To set up some standard (straight-line) pictures to be used

repeatedly by VU routines.

DESCRIPTION

INPUT

OUTPUT

CALLED BY VU CALLS NEWVEC GRAPHICS? Yes

SUBROUTINES CALLED DISK I/O? No

CALLING SEQUENCE

SUBROUTINE NAME PKSUB (TMPOUT, ZSPEC, POWPTS, LOGPOW, NOP)

PURPOSE To display the peakpicker results (flashing X's) on top of the

power spectrum display.

DESCRIPTION

INPUT

OUTPUT

CALLED BY POWDSP CALLS None GRAPHICS? Yes

DISK I/O? No

SUBROUTINES CALLED

CALLING SEQUENCE

SUBROUTINE NAME POCALC (PTSDPY, ZPSCAL, LOGPOW)

PURPOSE To calculate the power spectrum, low power spectrum, or phase

spectrum (as determined by LOGPOW).

DESCRIPTION

INPUT

OUTPUT

CALLED BY POWDSP CALLS BESSEL GRAPHICS? No

SEARCH FOUREA DISK I/O? Yes

STRA1O [DPO:WINDOW.DAT]

SUBROUTINES CALLED

CALLING SEQUENCE

48

I

~- m .-. ..- .. . i ..

SUBROUTINE NAME POWDSP (PDRAW)

PURPOSE To display the power spectrum (or log power spectrum or phase

spectrum) with peakpicker results superimposed if desired.

DESCRIPTION

INPUT

OUTPUT

CALLED BY VU CALLS POCALC, POWSUB GRAPHICS? Yes

SUBROUTINES CALLED PEAKPK, PKSUB DISK IO? Yes

CALLING SEQUENCE QVUCSI [DPO:OPARAM.DAT]

SUBROUTINE NAME POWSUB (LOGPOW, ZSPEC, POWPTS)

PURPOSE To display the contents of ZSPEC (usually the power spectrum) for

POWDSP.

DESCRIPTION

INPUT

OUTPUT

CALLED BY POWDSP CALLS NEWVEC GRAPHICS? Yes

SUBROUTINES CALLED DISK I/O? No

4CALLING SEQUENCE

"4

I /

, 49

SUBROUTINE NAME PRAMTR

PURPOSE To display values of specified parameter groups in common /PARAMS/.

DESCRIPTION

The common block /PARAMS/ contains three groups of program parameters:

1) NI, Li, II, P1, QO, Q1

2) N2, L2, 12, P2

3) L3, 13, P3

Subroutine PRAMTR displays the group of parameters and their current

values specified by the value of the argument WHICH. The display generated is

assigned the subpicture number PRI, PR2, or PR3, corresponding to the group

number, and DCHEK (PRi) is set to ON to record which subpicture is displayed.

INPUT

Argument

WHICH - is equal to one, two, or three depending on which parameter group

is to be displayed

Common variables:

PR1, PR2, PR3 in /DNAMES/ contain subpicture tag numbers set aside for

each group (0 < PRi < S20).

DCHEK(20) in /DSTAT/ - DCHEK (PRi) is set to ON if group i displayed

OUTPUT None

CALLED BY KCMNDS

SUBROUTINES CALLED None

CALLING SEQUENCE CALL PRAMTR (WHICH)

I

50

-A.

SUBROUTINE NAME PRESS

PURPOSE To accept an array of ASCII characters and move all the blanks in

the array to the right.

DESCRIPTION The input line INPUT is scanned from left to right by two

indices, the first (I) always trailing the second (J). Whenever J encounters

a non-blank character, this character is placed into INPUT (I), and a blank is

placed into INPUT (J). This press continues until J > 51, at which time all

blanks will have migrated to the right. The flowchart for PRESS is shown in

Figure 13.

INPUT

Argument

INPUT - a logical array (dimensioned 51) containing input line

OUTPUT

Argument

INPUT - same array with all blanks pushed to the right

CALLED BY QVUCSI

SUBROUTINES CALLED None

CALLING SEQUENCE CALL PRESS (INPUT)

51I -i

.........

7 FigureS 13-SbotiePES1lwhr
J=52

I

SUBROUTINE NAME QVUCSI

PURPOSE To act as a command string interpreter by converting an ASCII

string into codes recognizable by the VU routines.

DESCRIPTION This routine begins by initializing those (logical) strings

which will be used to hold intermediate results. These strings are CHAND,

CNUM1, CNUM2, and CNUM3. They will give rise to the output as follows:

CMAND will produce CMAND I (a single letter)

CNUM1 will produce NUM1 Can integer)

CNUM2 will produce NUM2 (an integer)

CNUM3 will produce ZNUM1 (a real number)

NUM3, although listed as an output variable, is currently not needed.

Both VU and SELECT were originally designed to accept commands in the

following form:

INPUT

T TT
(OPTIONAL) REAL

LETrER INTEGER. SECOND NUMBER
INTEGER

CMAND1 NUM1 NUM2 ZNUM1

/

53

i

SUBROUTINE NAMF QVUCSI (Cont'd)

DESCRIPTION (Cont'd)

QVUCSI was designed to allow more flexibility in input (for example, instead

of using P for power spectrum, the entire word POWER SPECTRUM can be typed for

clarity) and to allow merger of the VU and SELECT programs. It was thought

that eventually such cryptic commands as P5 (apply PEAKPK to power spectrum

and display the results) could be changed to a more readable and more easily

remembered form.

QVUCSI receives the string INPUT to be processed, and the first objective

is to Leate the equals sign, which will divide the input line into two

"halves," the left-hand (LHS) and the right-hand (RHS) sides.

PRESS (documented elsewhere) is called first to move all blanks to the

right in INPUT, and applying the system routine SCOPY (see the system

subroutine manual for a description of all routines other than PRESS used by

QVUCSI) puts a null byte (=zero) at the end of INPUT. With the null byte,

INPUT can be manipulated by other system subroutines such as TRIM, which is

now used to chop off trailing blanks.

A call to INDEX puts the location of the equals sign into the variable

EQLOC. If no equals sign is found, INDEX sets EQLOC =O; in this case the

equals sign should be assumed at the far right of INPUT, so EQLOC is reset to

one more than the (non-zero) length of INPUT (EQLOC - len (INPUT) + 1).

Next SUBSTR is called to put the RHS into the string called CNUM3. The

input has now been subdivided as follows:

* INPUT

LHS CNUM3=RHS

54

1 11,0

SUBROUTINE NAME QVUCSI (Cont'd)

DESCRIPTION (Cont'd)

Next VERIFY is used in a loop to find the place on the LHS where the numbers

begin. Then SUBSTR is called twice to divide the LHS into two strings (a

number string and a letter string) as follows:

INPUT

LHS CNUM3

CMAND CNUMI

As shown, the letter string is called CMAND (and may consist of more than one

letter at the moment) and the number string is called CNUM1 (which may consist

2J of two integers separated by a dash). Special case: If no numbers at all
appear on the LHS, the string CNUMI is defined to be the string which startswith the equals sign and continues to the right, including the RHS in the

process. This step is somewhat clumsy, since CNUMI should be the null string

at this point, but for "historical reasons" it was not done right away. This

CNLA41 array does become null a few steps later (because it begins with an

equals sign), so no harm is done.

Since the CUNUI array might be two numbers, VERIFY is called to locate the

separator between them (usually a dash). Then CNUM2 is truncated at this

55

* I -*-

I

SUBROUTINE NAME QVUCSI (Cont'd)

DESCRIPTION (Cont'd)

separator by SCOPY and the removed part is placed into the string CNUM2.

(Note that the truncation of CNUM1 yields the null string if CNUM1 begins with

an equals sign, as it does in the ")ecial case mentioned above.)

The input has now been divided into substrings as shown below:

INPUT

CMAND CNUM1 CNUM2 CNUM3

From these four strings the appropriate number can be determined (with the

help of the DECODE facility). Using DECODE, CNUMa yields NUMI, CNUM2 yields

NlM2, and CNUM3 yields ZNUMi. CMANDI is defined as the first element of the

string CMAND. (If CMAND is the null string, CMANDI is defined as a blank.)

The flowchart for QVUCSI is shown in Figure 14.

Note: Since CMAND1 is given its value by setting it equal to a logical

variable, the high-order byte is filled with zeroes. However, CMAND1 when

used by VU (and SELECT, maybe) is compared with words having the ASCII code

for a blank in the high-order byte, so this code must be placed into CMAND1 by

doing an ".OR." operation as follows:

CMAND1 = CMAND1 .OR. 20000

56

/

INPUT (Calling Sequence)

INPUT - a logical array (dimensioned 51) containing up to 50 ASCII

characters

(DISK)

OUTPUT (Calling Sequence)

CMAND1 - integer variable containing code letter

NUM1 - integer variable containing code number

NUM2 - integer variable containing code number

NUM3 - integer variable containing code number

ZNUI1 - real variable containing code number

(DISK)

Commons None

CALLED BY VU, KLOOK, POWDSP CALLS PRESS

SUBROTUINES CALLED

CALLING SEQUENCE CALL QVUCSI (INPUT, CMAND1, NUMI, NUM2, NUM3, ZNUMI)

5

/r
-57

.................................... a ______

INITIALIZE CALL PRESS TO CALL SCDPY TO ADD CALL TRIM TO 00
MOVE BLANKS TO

VARIABLES -*H MAL BYTE AT END OFF TRAIUING
THE RIGHT IN INPUT OF INPUT BLANKS IN INPUT

ASSUME EOUALS
SIGN AT FAR NO WAS CALL INDEX TO PUT
RIGHT; SET AN EQUALS SIGN LOCATION OF
EMM=LEN FOUND? EQUALS SIGN INTO
(INPUT) + I EOLDC

YES

CALL SUBSTR TO
PUT RHS INTO

CNLW

LOCATE WING
VERIFY) THE

BEGINNING AND
ENO OF NUMBER
STRING ON LHS

CALL SUBSTR TO ARE CALL SUBSTR TO
PLACE STRING STAR No THERE ANY PUT LETTj ON
TING AT EOLOC INTO NUMBEAS ON LHS INTO THE

CNIJIM1 THE LOS? STRING CMAND

YES

CALL SUBSTR TO
PLACE THIS NUMBER
STRING INTO CNUMI

CALL VERIFY TO
LOOK FOR A MON

NLW43ER (A
SEPARATOR IN

CNWI

(2 NUMBERS
IN NMI)

CALL ROM TO YES Is THEMCOPY SECOND A NON*JMBER
NUMBER INTO IN CNUMI

CNLA12

NO ORY I MAW IN CNUMT1

CALL SCOPY TO
TRUNCATE CNIN I
AT NDN*XW

ENTRY

DETERMINE
CNUm3-amI VALUE OF
CNIIIIIIIII-01011 - 41b CMAMI FROM

Figure 14 Subroutine QVUCSI Flowchart

58

SUBROUTINE NAME REEDTR (DSKBUF, IBLK, TRKNUM, ICHAN)

PURPOSE To read the disk for DISKRD -- 256 words from block # IBLK into the

array DSKBUF using channel ICHAN.

DESCRIPTION

INPUT

OUTPUT

CALLED BY DISKRD CALLS None GRAPHICS? No

SUBROUTINES CALLED DISK I/O? Yes

CALLING SEQUENCE [DPO:TRAKS2.DAT]

SUBROUTINE NAME SAVEIT (OUTNUM, RAW)

PURPOSE To store up to five display buffers on disk (to be read in and

displayed by the separate program MANYVU).

DISCRIPTION

INPUT

OUTPUT

CALLED BY VU CALLS None GRAPHICS? Yes

SUBRTOUTINES CALLED DISK I/O? Yes

CALLING SEQUENCE [DPO:TESTOO.DPY

DPO:TESTO1.DPY

DPO:TESTO2.DPY

DPO:TESTO3.DPY

DPO:TESTO4. DPY]

59

Im-

SUBROUTINE NAME SEARCH

PURPOSE To determine major peaks in consecutive power spectra and place the

results in a file called DPO:MRPK2.DAT., input for the SELECT program.

DESCRIPTION This routine begins by reading in appropriate parameters from

the file DPO:OPARAM.DAT, namely

SFREQ - the starting frequency for the peakpicker

LOGPOW - a parameter which currently specifies both the type of

window (Kaiser-Bessel or rectangualr) and the type of

spectrum (power, log-power, or phase)

ZPSCAL - power spectrum scale factor

Next the output file is set up (DPO:MORPK2.DAT) and the bin number (LSTRT)

corresponding to SFREQ is calculated.

The user is now prompted to specify

(1) where the first spectrum will be taken (ZSTART)

(2) the amount to be shifted before the next spectrum is taken (ZMOVE)

(3) the total number of spectra to be taken (ZWINDS).

These three values are written into the last record (record #1024) of the

output file along with the number of points of data submitted to each FFT

(PTSDPY).

The current sample number (ZNUM) is saved so that the array now being

displayed can be replaced after this routine is done.

Now the routine calculates NWINDS power spectra by successively repeating

the following steps:

(1) DISKRD is called to shift by ZMOVE samples and fill the array ARRAY

with raw data from this new vantage point

(2) An array PPOUT is initialized to zero

(3) POCAL is called to calculate the spectrum for these data (the data in

ARRAY)

(4) PEAKPK is called to pick out prominent peaks in the spectrum

(5) The results of PEAKPK are placed into the PPOUT array after removing

the offset (STRT) corresponding to SFREQ.

WARNING: LSTRT was originally subtracted so that peaks picked high in the

spectrum could be easily displayed when the SEARCH output was displayed

within the VU programs. Now that an entirely new set of routines is

/6

' .1 .- -* A" ' " .

SUBROUTINE NAME SEARCH (Cont'd)

DESCRIPTION (Cont'd)

available for the display and tracking of the SEARCH output, it is best

while using SEARCH to keep LSTRT=1 (or equivalently SFREQ=O). Otherwise

frequency readings in SELECT will not be correct, since the starting

frequency of the peakpicker (SFREQ) is not placed in the output file

DPO:MORPK2.DAT to be used by SELECT in determining frequencies. Since

SELECT can display and track in any area of the spectrum, it is best to

keep SFREQ=O while performing SEARCH and perhaps to increase the number of

peaks sought by PEAKPK to catch the higher frequencies.

(6) The PPOUT values are written onto a single record in the output file,

along with a variable LTYPE (set identically = 1 in this routine)

which will be used by SELECT to "mark" or "unmark" spectral slices.

After these six steps have been performed NWINDS times, SEARCH closes the

output file and has VOTRAX announce that the peakpicking has been completed.

The flowchart for SEARCH is shown in Figure 15.

INPUT (Calling Sequence)

(DISK)

Reads in the parameters SFREQ, starting frequency, LOGPOW, indicator of

spectrum type, and ZPSCAL, power spectrum scale factor from the file

DPO:OPARAM.DAT.

OUTPUT (Calling Sequence)

(DISK)

* Puts peakpicking results for all the power spectra taken on the file

DPO:MORPK2. DAT.

Commons: ARRAYS DNAMES

,4 DSTAT CMNDS

LETRS CHUNKS

SCALE

CALLED BY VU CALLS DISKRD, POCALC,

SUBROUTINES CALLED PEAKPK, SHOUT

CALLING SEQUENCE CALL SEARCH

61

i7

READ IN
APPWWRIATE CALCULATE

SEARCH PARAMETERS STARTING
FROM FREQUENCY

ON OPARkM. BIN
OAT

SET UP
aUTPUT FILE

ON MORPK2.
OAT

GET USER
SPECIFICATIONS

ZSTART
ZMOVE
ZWINDS

I

SAVE THE
LOCATION OF

THE RAW
BATA 66NG
DISPLAYED

CALL DISKRO
TO JUMP TO

SPECIFIED STARTING
POINT (ZSTART)

CALL DISKRD CLOSE
DONE? YES TO " P RACK FILE. CALL

ZWTNOS SPECTRA TO ORIGINAL VOTRAX TO
TAKEN? DISPLAY POSITION ANNOUNCE

COMPLETION

NO

CALL POCALC
TO CALCULATE

POWER SPECTRUM

CALL PEAKPK
TO ACK PEAKS
m THIS POWER

SPECTRUM

CALL DISKRD
TO SW7 AHEAD

By Hm
SAMPLES

Figure 15 Subroutine SEARCH Flowchart

62

SUBROUTINE NAME SHOUT (WHAT)

PURPOSE To issue voiced error responses by calling VOTRAX through VOCAL2.

DESCRIPTION

INPUT

OUTPUT

CALLED BY CHINFO CALLS VOCAL2 GRAPHICS? No

SEARCH DISK I/O? No

SUBROUTINES CALLED

CALLING SEQUENCE

SUBROUTINE NAME STRA1O (ZSPEC, POWPTS)

PURPOSE To straighten phases of power spectra.

DESCRIPTION

INPUT

OUTPUT

CALLED BY POCALC CALLS None GRAPHICS? No

SUBROUTINES CALLED DISK I/O? No

CALLING SEQUENCE

SUBROUTINE NAME TAPMOV (NCHAN)

PURPOSE To call the DR11C programs to transfer data from tape to disk.

DESCRIPTION

INPUT

OUTPU7

CALLED BY VU CALLS DR11C1, DR11C2, GRAPHICS? No

SUBROUTINES CALLED DREND DISK I/O? Yes

CALLING SEQUENCE [Write to user-

specified file]

63

. .

SUBROUTINE NAME TYPEIT (NUMI, ZNUMI, TRKNUM)

PURPOSE To type out ZNUM1 values of the raw data.

DESCRIPTION

INPUT

OUTPUT

CALLED BY KLOOK CALLS None GRAPHICS? No
VU

DISK I/O? No

SUBROUTINES CALLED

CALLING SEQUENCE

I6

"64

h

* !

I

SUBROUTINE NAME UPDAT

PURPOSE To update the "Q" and "P" parameters in KLASIT. These parameters

tell what the values of internal parameters were on previous forms.

DESCRIPTION This routine saves the internal variables of KLASIT for use if

the most recent forms must be eliminated because of a narrow peak. (If the

routine skips back several forms, it is desirable to know what the prevailing

parameters were.)

UPDAT sets the "P" parameters to the "Q" parameters (thus saving the "Q"

parameters), then sets the "Q" parameters to the "A" parameters. When the

first sample is being used, the "Q" parameters must be initialized.

The flowchart for UPDAT is shown in Figure 16.

INPUT (Calling Sequence)

(DISK)

OUTPUT (Calling Sequence)

(DISK)

Commons: PRAMI original parameters

PRAM2 "PII parameters

PRAM3 "Q" parameters

PRAM5 "A" parameters

CALLED BY KLASIT, LEV, CALLS None

NAROPK, NONLEV

SUBROUTINES CALLED

CALLING SEQUENCE CALL UPDAT

.65

*I
' I

* I.

'vi

I 65

.1 -

UPOAT UPOAT2

"iura1, S ubrotine IP ndUDT FloMhart
PARAMTERSPARAET66

SUBROUTINE NAME UPDAT2

PURPOSE To update the "A" and "B" parameters in KLASIT. These parameters

tell what the values of KLASIT internal parameters were on previous forms.

DESCRIPTION This routine saves the internal variables of KLASIT for use if

the most recent forms must be eliminated because of a narrow peak. (If the

routine skips back several forms, it is desirable to know what the prevailing

parameters were.) The flowchart for UPDAT2 is shown in Figure 17.

UPDAT2 sets the "A" parameters to the "B" parameters (thus saving the "B"

parameters) and then sets the "B" parameters to the current parameters. (The

"B" parameters are initialized to the current parameters if L=1.)

The relative ages of these sets of parameters are shown in Figure 16.

INPUT (Calling Sequence)

OUTPUT (Calling Sequence)

(DISK)

Commons: PRAMI original parameters

PRAM5 "A" parameters

PRAM6 "B" parameters

CALLED BY KLASIT, LEV CALLS None

SUBROUTINES CALLED

CALLING SEQUENCE CALL UPDAT2

OLDEST I LATEST

""0" A" "B" CURRENT'1 PARAMETER

LAST VALUES OF
CURRENT PARAMETER

LAST VALUES OF
"r PARAMETER

LAST VALUES OF
"A" PARAMETER

LAST VALUES OF
"0" PARAMETER

Figure 17 - Relative Ages of UPDAT and UPDAT2 Parameters

h 67

SUBROUTINE NAME VU (MAIN PROGRAM)
PURPOSE To provide excecutive program control for the graphics display

program.

DESCRIPTION

OUTPUT

CALLED BY None CALLS CHINFO, DISKRD, PICTS, GRAPHICS: Yes
SUBROUTINES CALLED DSPRAW, FFTDSP, POWDSP DISK I/O: No
CALLING SEQUENCE KLOOK, SEARCH, ADJUST,

TAPMOV, SAVEIT, TYPEIT,

XYPLOT, LOCATE, QVUCSI

68

/

68

-"a-

SUBROUTINE NAME WAMDSP

PURPOSE To display WAMSER results.

DESCRIPTION WAMDSP reads the WAMSER approximation to the original data from

the disk file DPO:WAMSER.DAT. WAMDSP reads each waveform triplet and calls

NEWVEC to generate the corresponding display in a manner similar to subroutine

DSPIT3. WAMDSP uses the decay time element of the WAMSER triplet to break up

rises and falls into two line segments joined at x equal to the last x

displayed plus decay time (the second segment running from last x + decay time

to last x plus duration). The display is turned on and given the tag and

status variable MWAMS. Before returning, WAMDSP also generates a copy of the

MWAMS display both at the top of the screen and at the bottom (tagged TWAMS

and BWAMS) and leaves the top one on if "Wi" was the last user command and

leaves the bottom one on if "W2" was the command.

INPUT Di3k: DPO:WAMSER.DAT

A FORTRAN direct-access file with 1024 records consisting of three words

each. Record 1024 contains the number of actual records composing the

approximation. Each triplet consists of a level value, decay time, and form

duration.

Common

/CMNDS/NUM3 - 2nd character of last user command

OUTPUT

Common

/DCHEK/MWAMS, TWAMS, and BWAMS - status variables of the three WANSER

displays

'1 CALLED BY KLOOK

A -SUBROUTINES CALLED NEWVEC

(graphics library)

CALLING SEQUENCE CALL WAMDSP

69

I'
1w

-a..

SUBROUTINE WAMSER

PURPOSE To smooth transitions between level forms and rise or fall forms in

KLASIT output.

DESCRIPTION Subroutine WAMSER performs final smoothing on the waveform data

produced by subroutine KLASIT and stored on disk file DPO:FINAL.DAT. WAMSER

refines the boundary points of rise and fall transitions within the KLASIT

data. In the case of consecutive non-level forms, the start of the second

transition (and end of the first transition) is the point at which direction

changes as provided by KLASIT. Should a rise or fall be preceded by a level,

the transition begins at the end of the first series of points in the original

data of minimum length, RUN, in the level which contains only "isolated"

jumps, if any, in the direction of the transition. An isolated jump is a

change occurring at a point whose two successors are at the same level as its

predecessor. In a similar manner, if a level follows a rise or fall, the

transition associated with the rise or fall ends in the level region at the

endpoint, working backwards, of a similar "run" of points in the level. If

the minimum run length (RUN) is not exceeded, then the transition begins at

the point at which the change in amplitude from the level amplitude exceeds a

percentage (parameter BAND) of the total change represented by the rise or

fall.

After transition boundary points are determined, the new durations of the

forms are calculated and a decay time is added to the form triplet to provide

a better representation of the curve shape. The decay time is the number of

points required for the transition to achieve a percentage (parameter TEN) of

the total change in level. The type of form, duration, level, and decay times
I are stored in triplets and written to the disk file DPO:WAMSER.DAT as

described in the OUTPUT paragraph.

KLASIT triplets are read from disk one at a time, and the new WAMSER

triplets are stored on the output disk file as they are created. The routine

retains copies of the previous two WAMSER forms and the next KLASIT form

surrounding the current form triplet.

The WAMSER flowchart is shown in Figure 18.

70

I
I

NAME WAMSER (Cont'd)

INPUT

Arguments

ARRAY - original data array - raw data

LENGTH - length of ARRAY

TEN - parameter (real valued) containing percentage factor for decay

time computation

BAND - floating point parameter containing level change threshold for

alternate method of marking transition start or stop.

DISK

DPO:FINAL. DAT - file containing triplets comprising KLASIT approximation

to original data contained in ARRAY

Data Statement

RUN = 4 - parameter containing minimum number of points for run

OUTPUT

DISK

DPO:WAMSER.DAT - file containing triplet comprising WAMSER approximation

to original data

(1024 records, three words per record, FORTRAN direct

access. Record number 1024 contains NROWS - the total

number of triplets in WAMSER smoothed signal. Each

triplet defined as follows:

KCOL1 = value of level

KCOL2 = 0 if this form is a level, or

= decay time at start of the rise or fall

KCOL3 = duration of the form, or

= 0, if this is end level)

CALLED BY KLOOK

SUBROUTINES CALLED None

CALLING SEQUENCE CALL WAMSER (ARRAY, LENGTH, NROWS, TEN, BAND)

47

/

71

77-

ANTIALLEAMIS

:WW FU
GET . 0; WW MARK;

.Am EST ROME
Ws"Mm VAIN"assom
MAN FOP FIRST TO *AM FRI
COMPLM OR MATIEWS

AT 4
INDIA No

mm F1111111

"E!"

READ
; NIXT TO LAST Too o"T" 7

qs 'AS, TIMOR CKJMT
3 wxl maT IVAN

Qw HIRAI AFTER oil

Amt oURATION
OF WE EINAR A
" wAs A (141
To MDULAW

LASI-STAR " OF LAST TOM 41
START THIS FOIN-AND 6 LAST FORMI

-END m r1AS FORNE-ND FT TV
'LAS17 fM

MfTurm

"S

KLASIT FORIA-LEM

y

sE, START P1 11
Im FOMENT AESEAt

OF TRANSPORT TO
FAID " a, ,, LAST F(WAA

FASEW mmALL

LAS, Eow
awk

FAR) START M
OF MUM

AT
AT ROSE" vs
NUM AND BAPD

AM AM FORRE
AGENM

NEXT SAW FORM!
iffiL

SIT to" a FRED END " 9

11
"101111111101 me

To P OF sromf AT a
mom am MET vs NA

Fm No MAW

I P119040 FM TONS LEVEL
IRMA THAT SAM Pol a 101011111;

owl 10111mmw
Lm am "m m LIMAIN OF I

c1hrof omm a "a mft ME

All
IF wwwnm m

an RISE MUM MET UP
In vm 111 NEW

Lrm 1:10=1

INFORPE

Figure 18 Subroutine WAMSER Flowchart

72

SUBROUTINE NAME VOCAL2

PURPOSE To allow sentences to be enunciated by VOTRAX.

DESCRIPTION

INPUT

OUTPUT

CALLED BY SHOUT CALLS None GRAPHICS: No

SUBROUTINES CALLED DISK I/O: No

CALLING SEQUENCE

SUBROUTINE NAME XYPLOT (BUFFER)

PURPOSE To produce a hardcopy of the current display.

DESCRIPTION

INPUT

OUTPUT

CALLED BY SELECT CALLS None GRAPHICS: No

KLOOK DISK I/O: No

VU

SUBROUTINES CALLED

CALLING SEQUENCE

7

I

/ 73

A i7dl_ , ,,.

VU FILE DESCRIPTIONS

Input Data File

The input file is a non-FORTRAN, unformatted disk file. Each block on the

file contains 256 words (16 bits), each is an integer value. The blocks are

read one at a time as the data in the block are required. A specified block

is read using a FORTRAN callable RT-11 SYSLIB function IREADW. The statement

is

WRDSRD=IREADW (256, DSKBUF,IBLK, ICHAN)

which reads 256 words from a block IBLK on a file associated with ICHAN. The

words are stored in a buffer called DSKBUF. The acutal number of words read

is stored in WRDSRD. All variables are integer values.

Parameters File

The user adjustable parameters are stored on a file named DPO:OPARAM.DAT.

This file contains both the current parameters and the default parameters.

This file is created with two FORTRAN write statements as follows:

WRITE(98) AMPMIN,SFREQ,LOGPOW,AMPBEG, (IDEF(I),I-1,4)

WRITE(98) BAND, PERHI,PERLO,FACTOR,FMERGE,HMERGE,BWIDTH,ZPSCAL,

1 (ZDEF(I),I-1,8)

AMPMIN, SFREQ, LOGPOW, AMPBEG, and IDEF are INTEGER*2 variables. BAND, PERHI,

PERLO, FACTOR, FMERGE, HMERGE, BWIDTH, ZPSCAL, and ZDEF are REAL*4 variables.

Window Parameters

The Kaiser-Bessel window parameters are generated and stored on a file

named DPO:WINDOW.DAT. This file is created with FORTRAN unformatted direct

access I/O. The file, assigned as logical unit 71, is defined with a length

of 1025 records where each record contains two words. The FORTRAN definition

statement is

DEFINE FILE 71 (1025,2,U,ASS71)

The windowing parameters are stored by creating PTSDPY records. The FORTRAN

statement is

WRITE(71'I) ZWINDO

-4 74

K------i _

where I runs from I to PTSDPY, and ZWINDO is the real Kaiser-Bessel window

parameter. The 1025 record contains PTSDPY and is written with FORTRAN

statement

WRITE(71'1025) PTSDPY

PTSDPY is an integer variable.

Peakpick Results

The peakpicking results generated for SELECT (the "Z" command) are stored

on a file named DPO:MORPK2.DAT. This file is created with FORTRAN unformatted

direct access I/0. The file, assigned to logical unit 77, is defined with a

length of 1024 records where each record is one more than the maximum number

of peaks (currently 10). The FORTRAN definition statement is

DEFINE FILE 77 (1024,RSIZE,U,ASS77)

where RSIZE is an integer equal to the number of peaks plus 1. The last

record (1024th) is first written with FORTRAN statement

WRITE(77'1024) ZSTART,ZMOVE,NWINDS,PTSDPY

ZSTART and ZMOVE are REAL*4 variables representing the first sample and the

shift duration, respectively. NWINDS and PTSDPY are INTEGER*2 variables

representing the number of windows and the points displayed, respectively.

The peaks are written on disk, one window per record, starting with record

one. The FORTRAN statement is

WRITE(77'JWNDOO LTYPE,(PPOUT(I),I=1,NOP)

where JWNDOW runs from 1 to NWINDS, and NOP is the number of peaks. LTYPE and

4 PPOUT are INTEGER*2 variables. PPOUT contains peakpicking results.

.* Display Buffer Save Files

As many as five display buffers may be saved on five files with the "T5"

function. The buffers are stored on consecutive files named DPO:TESTOO.DPY,

DPO:TESTO1.DPY, DPO:TESTO2.DPY, DPO:TESTO3.DPY and DPO:TESTO4.DPY. Each

buffer is saved using the FORTRAN statement
II CALL SAVE(DPO:TESTOO)

which is described in the FORTRAN extensions for the VT11 Graphics Support.

The file name is updated for each consecutive call.

KLASIT Output Files

There are three KLASIT output files and all have the same format. They

are all unformatted FORTRAN direct access files with 1024 three-word records.

A The last record contains only the actual number of data records on the file.

75

The three files are

The First Approximation to the Unsmoothed Data (UNSMOO)

The Smoothed Noise (SMO0)

The Final (KLASIT) Smoothed Approximation to the Original Data (BFIN2)

The files are set up by the following assignments:

CALL ASSIGN (79, 'DPO:UNSMOO.DAT', 14) or

CALL ASSIGN (79, 'DPO:SMOO.DAT', 12)

CALL ASSIGN (79, 'DPO:FINAL.DAT', 13) and

DEFINE FILE 79 (1024,3,U,ASS79)

Each three-word record consist of

1. 0, 1, or -1 indicator for level, rise, or fall

2. endpoint of the form

3. value of the level

WAMSER Output File

There is one WAMSER output file containing the WAMSER smoothed approxima-

tion to the original data. It is an unformatted FORTRAN direct access file

containing 1024 three-word records. Each record corresponds to and describes

a linear form used to approximate the original data in an indicated time

interval. The last record on file contains the count of the forms used to

form the approximation. The file is set up by the following statements:

CALL ASSIGN (80, 'DPO:WAMSER.DAT', 14)

DEFINE FILE 80 (1024, 3, u, ASS80)

Each three-word record consists of

1. value of level (or value of rise/fall at end)

2. 0 if form is a level or, if not a level, decay time

3. duration of form (or zero if this is the end level)

KLASIT Scratch File

The input array containing data to be smoothed by KLASIT is written out to

a scratch file so that it is available for recovery purposes. The file is a

FORTRAN unformatted binary file created by the statements:

CALL ASSIGN (81, 'DPO:KLSINP.DAT', 14)

WRITE (81) LENGTH, (S(I),I-1,LENGTH)

tij 76

VU LINKING PROCEDURE

Figure 19 shows the RT-11 BATCH file required to generate the VU execution

module. The subroutine object files are on DPO. These object files are

created by compiling the FORTRAN routines and by assembling the MACRO

routines. VTLIB is the RT-11 library containing the graphics display drivers.

SYSLIB is the FORTRAN callable system subroutine library. The FORTRAN object

time library is attached with the /F switch in the first link statement. The

/C switches are command line continuation indicators.

*77'IA /
/

,77
'I

$RUN LINK

TOtI 1500:] 111P0: VUw:DPO: VU SY? V TL I B, LPS1IH. , SYSL f S/TI: 2500/F/C
flF0: N(7N rRL. /0: 1/C
['FO L.o(:>TE/fl: I /C

111:0 1FOAYEA 1/0; :2/C
isO: V I nSP/U :2/C

[[0o I hFMOV/0 : 2/c
11: 1'1JUSr /: 2/C
111o 1FhPAWI 0: 2/C

I-F'o 1 [PI_ S/U:, 2/C
DPO[JMOSP/0 :2/C

fF0:1 I\(R1:dA) /0: 2/C
I P (K M N T. (3/0 :2/C

N1>0 HSIINE0 :2/C
D F, 0:If Ii TI M.1 N PI- Au~ I 1) 2/C

(w,, i.ofI tr/o: 21c:
(''-0: WOWMSER1/fl

IWO: IF ARIf 1/0:l 21C :2/

OF, V1 'ICS 1S1/0i : 31C,
(I- if I il 0/0: 3/

01-,: 41lS1114/0>'3/*

111:0: PI :M r P/O :3/C
1.11- 0' 1 YP I iT /0:,3/C

1W I\ 1~l..I V/U : 3/C

1W0: I-r I C F-/U3: 3/C

4 14.0 I-f'SW:-' /0 4II' / :/

I D'F'v INSIF 1/01:14/C

I DPiiO : NF WI'oC P25I c rc./3: 4/C
i P['14 1IM)I I v VOCCL/0: :4/C

LP:Ill-li r2 4/C

I+,):S :5i 10/0: 4/C
[W(): PFFfI, '0: 4/C

I~wO: RF. FrTiT/0: 4
$I- LIP

Figure 19 -BATCH File to Link VU)

78

PROGRAM SELECT

SELECT is an interactive graphics program for the examination, selection,

and tracking of peaks in power spectra. It is coded in FORTRAN and runs in

the same PDP 11/45 minicomputer system as does program VU. SELECT operates on

data supplied to it by program VU in the form of frequency bin numbers associ-

ated with peaks in individual power spectra. Each list of numbers associated

with a single power spectrum is called a "spectral slice." SELECT allows the

user to examine an ensemble of spectral slice data and track peaks throughout

the ensemble. The functional overview of SELECT as well as its command
1

language are contained in the ISPARS User's Guide. 1his section presents,

alphabetically by subroutine name, the subroutine descriptions, input/output,

files, and linking procedures for program SELECT.

79

. !--

SELECT SUBROUTINE DESCRIPTIONS

SELECT

PURPOSE To mark and store selected spectral peak data, perform tracking of

spectral peaks through this data using selected parameter values, and store

tracking results on disk.

DESCRIPTION SELECT is the central control program for analysis and display

of peaked spectral data. SELECT accesses this spectral data from the file

DPO:MORPK2.DAT created by program VU and displays the first thirty slices of

data. SELECT then awaits user ccmmands to continue processing the data. The

user may examine the entire file of peaked spectral slices using "UP" and

"DOWN" commands and can select and mark any number of slices for future

processing by the tracking procedure. User slice selections are indicated on

the current display by changing the baseline for the slice from a solid to a

dashed line. When the selections are complete, the designated spectral slices

are retained on the disk file, DPO:TRKABL.DAT, which serves as input to the

tracking procedures when they are initiated by the appropriate user command.

The results of tracking are stored on disk file, DPO:TRAKED.DAT, and can be

displayed on user request. The two files produced by SELECT, DPO:TRKABL.DAT

and DPO: TRAKED.DAT, as well as the input file, DPO:MORPK2.DAT, are retained

on disk after completion of the program so that, in subsequent program

executions, the selection and tracking procedures can be skipped and the

tracking results from the last execution of SELECT can be displayed

4 immediately upon request from the user.

DPO:TPARAM.DAT is another input and output file to SELECT and contains1 I both the default values of parameters used in tracking or displaying the data

and also the last used values of these parameters. The user, in the course of

processing the peaked spectral data, may change parameter values and generate

new tracked data using these new parameters. The parameter values used by the

program are saved to be available for use the next time the program is exe-

cuted if the user so desires. The default values are always saved to allow

Ii the user to return to them whenever he wishes; however, the default values

themselves may also be changed by user request and the new default values will

be retained on file.

The first operation performed by SELECT is the display of the first thirty

* slices of peaked spectral data. The program then waits for user instructions

80

via keyboard commands of the form given in the table which follows. Illegal

commands are ignored and the program waits for a legal instruction. All

commands begin with an alphabetic character. Some commands may consist of a

letter and one or two two-digit numbers, separated by a space as specified in

the table.

81

I-I

TABLE D1 - SELECT COMMANDS

Command Action Subroutines Called
E STOP; exit program

An Mark or unmark the spectral MARKIT
slice numbered n (max. 99)

M Move marked slices from MOVE2
DPI;MORPK2.DAT to the file XPKDSP
DPO.TRKABL.DAT and display the
latter

MI Display the current contents XPKDSP
of DPO:TRKABL.DAT

T Perform tracking on contents XSTR8S
of DPO:TRKABL.DAT XSETF3
and store results on
DPO:TRAKED.DAT

Ti Display tracking results XTDISP
or erase them if already displayed

T2 Erase everything else and display XTDISP
only tracker results, or erase
them if they are already displayed

G Produce hard-copy of current XYPLOT
display

R Reinitialize display buffer and XPKDSP
reenter program logic by displaying
the beginning of DOP:MORPK2oDAT

Unn Move current display up/down by XUP

Dnn nn lines where nn is 2-digit entry XPKDSP
XTDISP

B Re-display original time slices XPKDSP
from DOP:MORPK2. DAT

Cnn mm (refers only to MORPK2 data) BUNCH
Mark or unmark the spectral XPKDSP
slices numbered nn through mm

C3 Mark (or unmark) all spectral BUNCH
slices in MORPK2.DAT XPKDSP

P Use potentiometer to determine POTTY
frequencies

82

TABLE D1 - SELECT COMMANDS (Cont'd)

Command Action Subroutines Called

W Print spectral slice location WHERE
in original data

"BLANK" or <CR>' Move display up or down accord- X13LANK
ing to default preset values

X Display parameters with options XADJST
to change them and then redisplay
tracks or spectral slices which-
ever were last displayed

*carriage return

I3

/
r8

j7:.t777

INPUT keyboard input - FORMAT (1A1, 12, 1X, 12)

CMAND1 - command letter

NUM1 - first two-digit numeral of command, if any

NUM2 - second two-digit numeral of' cotmmand, if any

OUTPUT None

SUBROUTINES CALLED XPKDSP

MARKIT

XSTR8S

XSETF3

XTDISP

XY PLOT

xU P

BUNCH

POTTY

XB LANK

WHERE

XADJST

CALLED BY None

SELECT is a program.

CALLING SEQUENCE None

* 84

10000

SUBROUTINE NAME XTDISP

PURPOSE To display tracks

DESCRIPTION Subroutine XTDISP displays the contents of the file,
DPO:TRAKED.DAT, within the spectral slice number and frequency bounds set up

by the user in other parts of program SELECT. This file contains all the

tracks found in the spectral data by the tracking routines. The track display

covers 30 spectral slices along the y-axis, increasing in index from the top

of the screen to the bottom. The starting spectral index of the display is

specified by BEGIN2, the argument to subroutine XTDISP. The frequency bounds

of the display are specified by the starting frequency ISTART, specified

earlier by the user and stored on file DPO:TPARAM.DAT, and by the window size

PTSDPY of the FFT's used to generate spectral data. PTSDPY is contained in

the 101st record of DPO:TRAKED.DAT. The maximum frequency possible is 9 KHz

since the sample rate of the raw acoustic data was 18 KHz. The internal size

of each power spectrum frequency bin is, therefore, 9000 (PTSDPY 2-1). The

lower frequency bound of the display is that bin containing the requested

start frequency, and the range of frequencies is 51 bins.

Subroutine XTDISP examines all tracks stored on file and displays all

parts of all tracks which intersect the bounds of the display. Tracks are

displayed by vectors between points where the slope of the track changes. The

track display is a subpicture with tag equal to 50.

INPUT

Arguments

BEGIN2 - spectral slice index for start of display

Files

a DPO:TPARAM.DAT - ISTART (word #7 of record 1) lower frequency bound of

display

DPO:TRAKED.DAT - (unit 11) (FORTRAN direct access)

record #101

TRKTOT - total number of tracks

TOT99 - total number of spectral slices

PTSDPY - window size of FFT

record #n

track number n - list of frequency bin numbers read into THSTRK array

/ 85

E.

SUBROUTINE NAME XTDISP (Cont'd)

OUTPUT Track disPlaY

SUBROUTINES CALLED None

CALLED BY SELECT

CALLING SEQUENCE CALL XTDISP (BEGIN2)

*86

SUBROUTINE NAME XADJST

PURPOSE To display current or default program parameters and allow user to

change parameters via specified keyboard commands.

DESCRIPTION Seven parameters are used within program SELECT and retained on

disk file DPO:TPARAM.DAT. The first seven words of this file contain the

current "working" values of these parameters and the next and final seven

words contain default values for these same parameters. Subroutine XADJST

reads the values for the list of program parameters. The routine is called by

SELECT when prompted by the curser commands "X" or Xl". If the second

character of the command is "1", XADJST sets the program parameters to the

default values retained on TPARAM.DAT. Otherwise, the parameters are set to

the "working" values currently on file. These may be values saved earlier in

the current execution of SELECT or in a preceding execution.

After the initial data input and assignments, the program variables and

current values are displayed, accompanied by a notation of the command

necessary to change each one.

XADJST then waits for a command from the keyboard; possible commands and

actions taken are:

F1 = N - set FROGAP equal to N

Ki = N - change KNTLIM to N

Ti = N - change TRACKS to N

T2 = N - change TIMGAP to N

Il = N - change ISTART to N

Ni = N - change NUMI to N

C - changes CMANDI. (If already equal to U, sets it to D and

vice versa)

X - erase display; save changes in working values only and

output all parameter values to file TPARAM.DAT and return

•I X1 - erase display; reset defaults to new working values;
output all values to TPARAM. DAT and return

E - exit program

El - do same as X and X1, respectively, but exit program

instead of return.

/8
87

SUBROUTINE NAME XADJST (continued)

INPUT

Arguments

NUHX - argument containing the second character entered by the user when

initiating the call to XADJST the number "1" is the only meaningful

value and causes parameters to be set to default values.

File

DPO:TPARAM.DAT - (unit 98) (unformatted binary)

One record containing seven working parameter values and

seven default parameter values

OUTPUT

File

DPO:TPARAM.DAT - (cf above) on output, contains updated values

SUBROUTINES CALLED None

CALLED BY SELECT

CALLING SEQUENCE CALL XADJST (NUMX)

88

I

SUBROUTINE NAME XUP

PURPOSE To compute the index of the spectral slice which should appear at

the top of the display when a shift up or shift down command has been received.

DESCRIPTION The given shift number is added to or subtracted from (for

shift up or shift down, respectively) the index of the current slice at the

top of the display. If the shift number is zero, shift to the first spectral

slice for down shift and the spectral slice that is thirty from the last in

the case of up shift. Whenever the top index is within thirty of the end of

data, it is reset to the slice thirty from the end.

This routine handles both displays of the original spectral slices and

also selected slices and tracking results. The argument PNUM serves as a

means of indicating which type of data is referred to by the shift command.

INPUT

Arguments

PNUM - if equal to one, commands refer to original spectral slices;

otherwise, they refer to selected slices

BEGIN - index of spectral slice currently at top of display of original

spectral slices

BEGIN2 - ine-, of spectral slice currently at top of display of selected

slices

CMAND1 - Hollerith variable containing "U" or "D" to indicate direction

of shift

NUMI - integer amount of shift

COMMON [CHUNKS] - contains NWINDS, the total number of spectral slices

* 'OUTPUT

Arguments

* IBEGIN and BEGIN2 - new values

SUBROUTINES CALLED None

CALLED BY SELECT

CALLING SEQUENCE CALL XUP (PNUM,BEGIN,BEGIN2,CMAND1,NUMl)

89

o-' r -,- -- _L~ z
-

- 1

SUBROUTINE NAME POTTY

PURPOSE To display a vertical cursor on screen controlled by the potentio-

meter for channel zero and to display in the console LED's the frequency value

of the cursor position on the frequency axis.

DESCRIPTION A vertical cursor, whose position is movable and depends on the

value of the A/D conversion of the signal in channel zero, is displayed. With

no signal physically plugged into the console in this channel, the signal

sampled is the potentimeter output which varies from 0 to 4096 digitally. An

18000-Hz sample rate is assumed for the spectral slice input data, and hence

frequency intervals on the horizontal axis equal 9000/PTSDPY/2-1), where

PTSDPY is the number of points taken in the FFT. The position'of the cursor

is converted to frequency and the frequency is displayed in the console LED's.

INPUT

Arguments

PTSDPY - number of points taken in FFT

File

DPO:TPARAM.DAT - (unit 98) (FORTRAN unformatted binary)

seventh word on 1st record is start frequency for display

OUTPUT frequency value of cursor position displayed in console LED's

SUBROUTINES CALLED None

CALLED BY SELECT

CALLING SEQUENCE CALL POTTY (PTSDPY)

/

: 90

i __

ND-A141 575 PROGRAM DESCRIPTIONS FOR INTERACTIVE SIGNAL AND PATTERN /2
ANALYSIS AND RECO..(U) DAVID W TAYLOR NAVAL SHIP
RESEARCH AND DEVELOPMENT CENTER BET.. W PARSONS ET ALJNCLASSIFIED MAR 84 DTNSRDC/CMLD-84-05 F/ G 9 /2 NL

00000,ND

~-

10 j(2.2

11 1 111 1.8

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF S1ANDARDS-1963-A

4~ I1

/7

I

SUBROUTINE NAME WHERE

PURPOSE For an indicated series of spectral slices in DPO:TRKABL.DAT, to

print out the absolute location of each in original peaked data MORPK2.DAT.

DESCRIPTION Subroutine WHERE begins at a specified record (spectral slice)

in DPO:TRKABL.DAT and reads a sequence of records corresponding to spectral

slices from TRKABL.DAT in order to print out the second word of each record

which contains the index of that record in the original data.

INPUT

Arguments

BEGIN2 - TRKABL.DAT index of first slice of display

NUMI - index of first slice for which information is desired. This is

relative to display. Must be between 1 and 30.

NUM2 - index of last slice for which information is desired. Must be

bet,,een 0 and 30. If equal to zero, only NUMIth record is

,,r inted.

File

DPO:TRKABL. DAT

OUTPUT

TTY - index relative to display and absolute index in DPO:MORPK2.DAT

for each spectral slice indicated by input

SUBROUTINE CALLED None

CALLED BY SELECT

CALLING SEQUENCE CALL WHERE (BEGIN2, NUMi, NUM2)
I9I'i

'1

-.4

i 91

n L

SUBROUTINE NAME XBLANK

PURPOSE To access fifth and sixth wards on DPO:TPARAM.DAT and return values

through arguments.

DISCRIPTION Performs: READ(9B) TRACKS, GROGAP,KNTLIM,TIMGAP,CMANDT,NUMI

and returns CMAND1 and NUM1 to calling routine. These are current working

values for the direction and amount of the automatic move commands.

IN PUT

File

DPO:TPARAH.DAT - (unit 98)(FORTRAN unformatted binary) (Single record, cf

SELECT File Descriptions)

OUTPUT

Arguments

CMAND1 - from disk

HUM1 - from disk

SUBROUTINES CALLED None

CALLED BY SELECT

CALLING SEQUENCE CALL XBLANK (CMANDI,NUH1)

92

SUBROUTINE NAME BUNCH

PURPOSE To change the display line type of a series of consecutive spectral

slices on DPO:MORPK2.DAT.

DESCRIPTION The first two arguments to BUNCH are the beginning and end

record numbers identifying a series of spectral slices on DPO:MORPK2.DAT.

BUNCH reads each of these records and changes the type of the base line

associated with each from solid to broken or broken to solid, depending on

what it is initially. The records with the new line types are replaced on

DPO:MORPK2. DAT. No display is changed.

INPUT

Arguments

NUM1 - begin and end absolute record numbers

NUM2 - of slices on MORPK2 to be changed

BEGIN - not used or altered

COMMON/CHUNKS/ ef MOVE 2

File

DPO:MORPK2. DAT

OUTPUT

DPO:MORPK2. DAT

SUBROUTINES CALLED None

CALLED BY SELECT

CALLING SEQUENCE CALL BUNCH (NUM1,NUM2,BEGIN)

93

Ii'

SUBROUTINE NAME MOVE2

PURPOSE To transfer spectral slice data from DPO:MORPK2.DAT to

DPO:TRKABL.DAT for each slice chosen by an "A" command in the main routine.

DESCRIPTION Each record of DPO:MORPK2.DAT is read separately and the line

type indicator, LTYPE, (the first word of the record) is checked. If LTYPE=2,

the record is written out to the file DPO:TRKABL.DAT with the original record

number on MORPK2 added after LTYPE. The records written in DPO:TRKABL.DAT are

counted and the total is added to the list of data obtained from record number

1024 of MORPK2.DAT, to form record 1024 of TRKABL.DAT.

INPUT

COMMON /CHUNKS/ - contains NOP, the maximum number of peaks in each

spectral slice. Determines the record size on

DPO:MORPK2.DAT.

File

DPO:TRKABL.DAT - (unit 77)(FORTRAN direct access)

File containing peaked spectral slice data. Maximum

number of records is 1024; record size is NOP+1.

OUTPUT

File

DPO:TRKABL.DAT - (unit 99)(FORTRAN direct access)

File containing only selected spectral slices. Record

format same as MORPK2.DAT. except that record size is one

larger and original record number of the slice on MORPK2

is added after LTYPE.

SUBROUTINES CALLED None

CALLED BY SELECT

CALLING SEQUENCE CALL MOVE2

9 94

'AI i~------

SUBROUTINE NAME MARKIT

PURPOSE To change the base line of a designated spectral slice in the

current display from solid to broken or vice versa.

DESCRIPTION MARKIT changes the manner of display for a particular spectral

slice designated by the subroutine argument NUMI. NUMI must refer to a

spectral slice on display and must be a positive number no greater than

thirty. The spectral slices on display are assumed to be from file

DPO:MORPK2. DAT which forms one of the primary input files to program SELECT.

The second argument to MARKIT, called BEGIN, identifies the first spectral

slice of the display as to its record number in MORPK2.DAT.

MARKIT locates the designated slice in the fil- MORPK2.DAT, reads its

associated data record, and changes the type indicator of the record from

solid to broken or vice versa. This type indicator specifies whether the base

line displayed for the spectral slice is solid or broken. When the type is

changed, the altered data re replaced on the MORPK2.DAT file. The subpicture

associated with the spectrdl slice is erased, recreated to blink for one

second, erased again, and finally recreated and displayed with the new line

type.

These operations are facilitated by creating each spectral slice as a

separate subpicture and using its index on the data file MORPK2.DAT as the

associattd subpicture tag.

INPUT

4 Arguments

NUMI - index of designated spectral slice (relative to top of

* display). (Must be no greater than 30).

BEGIN - record number of first spectral slice on display.

Record number refers to its position in DPO:MORPK2.DAT.

COMMON /CHUNKS/ - contains NOP, the maximum number of peaks in each

*I spectral slice

* 'File

* DPO:MORPK2DAT - (unit 77)(FORTRAN direct access) File containing data

for one spectral slice per record.

Each record consists of a base line type to determine solid or broken line

display (LTYPE=1 or 2) and a list of NOP numbers representing the frequency

/ bin numbers of peaks in the associated power spectrum.
/

95

* I

SUBROUTINE NAME MARKIT (Cont'd)

OUTPUT

File

DPO:MORPK2.DAT -same as on input except that the line type for the

designated spectral slice is reversed

SUBROUTINE CALLED None

CALLED BY SELECT

CALLING SEQUENCE CALL MARKIT (HUI41,BEGIN)

96

SUBROUTINE NAME XPKDSP

PURPOSE To display contents of file containing spectral slice to be tracked

or contents of file containing original output of peakpicking routine.

DESCRIPTION The arguments to subroutine XPKDSP specify the file of data to

be displayed and the spectral slice number within that file at which to begin

the display. The possible files are restricted to either the file of peaked

spectral slices input to program SELECT or the file containing the selected

spectral slices to be tracked. XPKDSP displays up to 30 spectral slices

beginning with the specified record. Fifty-one frequency bins are displayed

beginning at a user specified frequency obtained from disk file

DPO:TPARAM.DAT. The presence of a peak is indicated by an "X" in the

appropriate bin with frequency being the horizontal axis and slice number

along tne vertical. The peak display for each spectral slice is a separate

subpicture whose tag is the index of the slice in the current display.

INPUT

Arguments

BEGIN - spectral slice number at which to start display

DNUMBR - indicator of input file to be used

Common

/CHUNKS/,NOP - the number of peaks per spectral line

Files

DPO:TPARAM.DAT - (unit98) (unformatted binary) A single 7-word record.

Word number seven, ISTART, contains frequency at which

to begin display.

DPO:TRKABL.DAT - (unit 99) File containing the list of peaks (frequency

bin numbers) for each spectral slice selected to be

tracked, cf XSTR8S

DPO:MORPK2.DAT - (unit 99) File containing the list of peaks for each
spectral slice output by the peakpicking procedures and

input to SELECT

OUTPUT Output restricted to creation of new display buffer contents

SUBROUTINES CALLED Calls only FORTRAN library and system graphics routines

CALLED BY SELECT

CALLING SEQUENCE CALL XPKDSP(BEGIN,DNUMBR)

97

' - .-

SUBROUTINE NAME XSTR8S

PURPOSE For each frequency in the input power spectra, to determine the

spectral slices in which that frequency appears as a peak and the number of

consecutive slices in which it remains a peak.

DESCRIPTION Input for this routine consists of the file, DPO:TRKABL.DAT,

which contains the spectral slices of peaked data selected by the user in

routine MARKIT. Each record consists of a list of bin numbers of the power

spectrum peaks determined by the VU routine PEAKPK. The maximum number of

peaks per power spectrum is contained in a common variable NOP currently set

to ten.

XSTR8S searches each list of spectral peaks for the occurrence of each

possible frequency bin (max=250). The frequency bin number, the start index

in the spectral slices of its occurence as a peak, and the number of

successive slices containing the peak are output as a three-word record on the

FORTRAN direct access file DPO:SLINES.DAT. The maximum number of such records

is 1023. The 1024th and last record is used to output the actual number of

three-word records put on file. All frequency bins and all spectral slices

are checked until the maximum number of records on SLINES.DAT is found.

INPUT

NOP - (in COMMON /CHUNKS/) max. number of peaks per power spectrum

DPO:TRKABL.DAT - (FORTRAN unformatted direct access file)

The file containing peaks (frequency bin numbers)

determined in each of the selected power spectra. There

are 1024 records of length NOP+2.

Typical record: LDUMY - value not used in XSTRPS

LINUM - index of spectral slice in MORPK2.DAT

PEAKPS - vector of bin numbers (in increasing order) of

peaks in the associated power spectrum. NOP

maximum, with zero fill.

Last record: (5 values)

ZSTART

ZMOVE cf SELECT File Descriptions

NWINDS

PTSDPY

TOT99 - number of spectral slices on file

/ * 98

SUBROUTINE NAME XSTR8S (Cont's)

OUTPUT

DPO:SLINES.DAT - (FORTRAN unformatted direct access file; 1024 records

of size=3 words)

Typical record - LSTR8 (1) - frequency bin number

LSTR8 (2) - spectral slice index of start

LSTR8 (3) - number of consecutive slices with peak in

this bin

Record #1024 - actual number of typical records

SUBROUTINES CALLED None

CALLED BY SELECT

CALLING SEQUENCE CALL XSTR8S

4
.. 9

4
t9

* -. .-

.i ..

SUBROUTINE NAME XSTAR

PURPOSE To find a region in which to begin tracking where peaks are stable

over several spectral slices.

DESCRIPTION XSTAR examines a specified triple in the file, DPO:SLINES.DAT,

generated by XSTR8S in order to find an area where peak data are either un-

changing or change very little over several consecutive spectral slices. Such

a region is the start point for frequency tracking performed by subroutine

XSETF3.

If the length of the constant frequency exceeds an input threshold

(KNTLIM), the area described by the triple is called a vertical stable region,

and the frequency bin number and index of the middle spectral slice are

returned by XSTAR as the start of a track. If the length of the constant

frequency does not exceed the stability threshold, XTSTAR tests for a diagonal

region about the frequency and spectral slice obtained from SLINES.DAT.

XTSTAR first searches succeeding spectral slices for an occurrence of a

frequency bin peak no more than one bin away from the peak in the preceding

slice. XTSTAR will do this search as far as it can, return to the start

point, and perform a similar search backwards over spectral slices. The

region is bounded by spectral slices whose closest peaks to the last frequency

bin of the run differ by more than one. If the length of this "diagonal"

region exceeds KNTLIM, the frequency bin and slice number of the midpoint are

returned by XTSAR as a track start point.

If neither vertical region or diagonal regions are found, a start failure

4 . indicator is returned.

INPUT

' Arguments

KROW - XSTR8S triple index
*1

TOT99 - number of spectral slices on the file TRKABL.DAT

KNTLIM - minimum length of stable start threshold

*DPO:SLINES.DAT cf. XSTR8S output

100

SUBROUTINE NAME XSTSAR (Cont'd)

OUTPUT

Arguments

BFREQ - frequency bin number of start of track

TIMBEG - index of start spectral slice

LGENUF - track start indicator

=1 - vertical region

=2 - diagonal region

=0 - no start

SUBROUTINES CALLED XNEARP

CALLED BY XSETF3

CALLING SEQUENCE CALL XSTAR (KROW,TOT99,KNTLIM,BFREQ, tBt.G,LGENUF)

101

Ai

SURBROUTINE NAME XSETF3

PURPOSE To perform tracking of frequency peaks throughout the selected

spectral slices.

DESCRIPTION XSETF3 is the master tracking routine which makes all necessary

file assignments, accesses tracking parameters, performs dataI/O, and

sequences routines to track frequency peaks throughout the ensemble of

spectral slices selected as input by program SELECT. XSETF3 calls subroutine

XTSTAR to find a stable region where it begins tracking at the middle spectral

slice.

Tracking per se is accomplished by incrementing spectral slice indices by

one, first going in a forward (W1) direction, then by returning to the start

point and proceeding backwards (increment=-1). XSETF3 calls subroutine XNEARP

to find the frequency bin in the next spectral slice which is closest to the

current track frequency. If the change in bin numbers returned by XNEARP is

within the frequency jump threshold (FROGAP), the new bin number is added to

the track. If the FROGAP threshold is exceeded, XSETF3 looks ahead at

successive spectral slices to see if the current frequency picks up again. If

the peak resumes (within FROGAP) within the next TIMGAP slices, the track is

continued and the gap is filled by a straight line interpolation between the

existing bin numbers as provided by subroutine XINTER. Failure of the peak to

resume within this TIMGAP interval signals the end of the current track.

Track data are stored in a 512-word vector, THSTRK, such that the content

of THSTRK(I) is the frequency bin number for the zpectral slice index, I.

Spectral slices in which the track doesn't exist are designated by -1's in the

corresponding THSTRK elements. The entire THSTRK vector for each separate

track is stored on the disk file DPO:TRAKED.DAT, which has been set up to hold

a maximum of 100 tracks. Before being stored, each track is compared to all

other stored tracks by subroutine MATCH. Duplicate tracks are not stored.

The fact that duplicates are not determined until the end of a track, and the

fact that two different tracks which intersect each contain the entire dup-

licated segment, represent significant shortcomings in this tracking scheme.

A flowchart for XSETF3 is contained in Figure 20.

1, 102

SUBROUTINE NAME XSETF3 (Cont'd)

INPUT

COMMON /CHUNKS/SEGSIZ,NOP

SEGSIZ - not used

NOP - maximum number of peaks per spectral slice

DPO:TPARAM.DAT - (unit98) (unformatted binary) A single four-word

record containing the current values for tracking

parameters and thresholds

TRACKS - number of tracks requested

FROGAP - frequency jump threshold

KNTLIM - length threshold for stable region in which to start

track

TIMGAP - spectral slice gap threshold for interpolation

DPO:SLINES. DAT - (unit88) (unformatted FORTRAN direct access) Contains

line tracks of constant frequency; cf XSTR8S output

DPO:TRKABL.DAT - (unit 99)(unformatted FORTRAN direct access) Contains

lists of peaks for each spectral slice; cf. XSTR8S input

OUTPUT

DPO:TRAKED.DAT - (unit1l) (unformatted FORTRAN direct access) Contains

all separate tracks through ensemble of spectral peaks

up to TRACKS, the maximum number requested (100 max.).

There are 101 records of 512 words each.

Typical record

(THSTRK (i),i=1,512) - list of frequency bin numbers or -1 if no track

element exists in the spectral slice of corre-

sponding index

.. Record #101: (6 words)

TRKTOT - number of separate tracks on file

TOT99 - number of spectral slices

PTSDPY

ZSTART cf. SELECT File Descriptions

ZMOVE

NWINDS

1.03

pr

SUBROUTINE NAME XSETF3 CCont'd)

SUBROUTINES CALLED XTSTAR

XNEAJRP

XINTER

MHATCH

CALLED BY SELECT

CALLING SEQUENCE CALL XSETF3

$10

QiD
ASSIGN FILES GET TOTU-#

SPECTRAL SLICESLASTI-# WAS OUT FROM
SSTRIS# TRACKS DESIRED h

TEACHING PARAMS.

INCREMENT TRACK YES STORE TAB # TRACKS W
COUNTER HAVE REACHED - TT01, OTSOPY, ZSTART,

Eow ZWINDS ON RECORDDESIRED # TRACKS? #101 OF UNIT ii

INCREMENT REC. # CLOSE FILES 11, BB, 99
GET TRACK STARTXSTA

START TYPE 0'A
'NO START THIS ROW)

I NO

STORE BIN # AND
SLICE # OF

"START" OF TRACK

f
SET INCREMENT TO -1 SET INCREMENT TO + 1 FOR

RESET SLICE # TO "START" FORWARD TRACKING

SPECIAL CASE (LAST YES SLICE # AT BOUNDS OF
SPECTRAL SLICE I1 OR - - PEAKED DATA?TOTi9: ADD CLOSEST BIN IN 1 OR TOTS91 A

LAST ONE IF mV wsMAp N
OTHERWISE. ADD -I TO NO

LAS
T

POS. IN THSTRK ARRAY GET CLOSEST BIN IN NEXT (SLICE #=LAST PT TRACKED)

NO 10 SPECTRAL SLICE IXNEARPI

S7? DIFFERENCE IN BIN WS NO
IMINDIF4FROGAP (GAP i ADO NEW BIN # TO TRACK

YES THRESHOLD)' INCREMENT SLICE #

YES IDISCONTINUOUS TRACK

DOES TRACK PICK UP AGAIN YES
IIMINDIFFAOGAPI TO LAST F INTERPOLATE OVER GAP h

BIN #1 BEFORE TIMGAP SLICES' ADVANCE SLICK #

NO

END TRACK FILL REST OF
TRACK ARRAY W1 -1'S

USING CURRENT INCREMENT

*YES
l0 IS INCREMENT= + I

-01 NO IMC= -1)

(TRACK COMPLETE 8
ENTERED IN THSTRIK ARRAY)

CHECK TO SEE IF IT
DUPLICATES PREVIOUS

TRACK.
XMATCH

YES f
THIS TRACK A
DfORGET I DUPLICATE'

STORE IT
PUT THSTRK IN LIT 11
=OPO: TRAKED.DAT

Figure 20 - Subroutine SETF3 Flowchart

105

SUBROUTINE NAME XNEARP

PURPOSE To locate the peak closest to an input frequency bin number and

compute the absolute difference in bin numbers for a given spectral slice.

DESCRIPTION XNEARP is called with two input arguments containing the index

of the desired spectral slice and the number of the basis frequency. XNEARP

reads the peak bin numbers for the spectral slice from the direct access file

DPO:TRKABL.DAT. If there are no peaks in the spectral slice, bin number zero

is output as the closest peak with absolute difference equal to 32000. If

there are peaks, the closest bin number is selected and the absolute differ-

ence computed.

INPUT

Arguments

FREQ - input (base) frequency bin number

TSLICE - index of spectral slice data to be examined

DPO:TRKABL.DAT - cf. XSTR8S, Input

OUTPUT

Arguments

NFREQ - bin number of closest peak in given spectral slice

MINDIF - absolute difference in frequency bin numbers, /FREQ-NFREQ/

SUBROUTINES CALLED None

CALLED BY XTSTAR, XSETF3

CALLING SEQUENCE CALL XNEARP (FREQ,TSLICE,NFREQ,MINDIF)

.4

106

* %

SUBROUTINE NAME XINTER

PURPOSE To interpolate frequency bin numbers over a gap in a frequency

track.

DESCRIPTION Subroutine XINTER has as input a partial track of frequency

peaks which has a gap or interval of spectral slice indices without any peaks

belonging to the track. The indices bounding this interval are input to

XINTER along with the frequency bin numbers in the track at those indices.

XINTER determines the change in bin numbers divided by the difference in

indices and, using this value as the slope of a straight line between two

points, computes the frequency bin determined by that line at each intervening

index and adds it to the track. Bin numbers are computed in floating point

arithmetic and rounded to the nearest integer.

INPUT

Arguments

THSTRK - a 512-word vector containing the partial track

FREQ - old bin number

TIMPTR - old spectral slice index

NFREQ - new bin number

TPR - new spectral slice index

OUTPUT

Arguments

THSTRK - a 512-word vector containing augmented frequency track

SUBROUTINES CALLED None

CALLED BY XSETF3

CALLING SEQUENCE* CALL XINTER (THSTRK,KTRAK,INC,FREQ,TIMPTR,NFREQ,TPR)

*Note: Arguments KTRAK and INC are not used.

1 10

107

SUBROUTINE NAME XATCH

PURPOSE To compare the input track to all tracks already obtained to check

for duplicate tracks.

DESCRIPTION The current track, as input to XMATCH, is contained in a 512-

word vector and all tracks previously obtained are stored on disk. XMATCH

reads in each track from the disk file into another vector, local to XMATCH,

and simply compares the two vectors word-by-word. If the current track

matches no stored track, the total number of tracks is incremented and a no-

duplicate indication is returned. If the current track does match a previous

track, the current track index is decremented and a duplicate indication is

returned to the calling program.

INPUT

Arguments

THSTRK - vector containing current track

TOT99 - maximum number of spectral slices in input data

KTRAK - index Id of current track

TRKTOT - current total number of different tracks on file

DPO:TRAKED.DAT - cf XSETF3, output

OUTPUT

Arguments

TRKTOT - new total of different tracks on file

DUPE - LOGICAL * 1 variable which is true only when input track

duplicates a previously stored track

SUBROUTINES CALLED None

* CALLED BY XSETF3

CALLING SEQUENCE CALL XMATCH (THSTRK,TOT99,KTRAK,TRKTOT,DUPE)

108

SELECT FILE DESCRIPTIONS

DPO:MORPK2. DAT

DESCRIPTION MORPK2. DAT is the spectral data input file to program SELECT

generated by program VU. It contains a maximum of 1023 spectral slices, each

of which consists of a list of frequency bin numbers of peaks in an associated

power spectrum. An additional record on the file contains specific parameter

information concerning the power spectra taken in VU.

TYPE MORPK2.DAT is a FORTRAN unformatted direct access file.

CONTENTS

Records - 1023: LTYPE, (PPDAT(I),I = 1,10)

LTYPE - integer equal to 1 or 2 to specify type of baseline (solid

or broken) used to display spectral slice

PPDAT - list of integer frequency bin numbers

Records - 1024: ZSTART, ZMOVE, NWINDS, PTSDPY

ZSTART - floating point value of start point in raw data file of

first power spectrum

ZMOVE - floating point value of the jump in number of points

between power spectra

NWINDS - integer value of the total number of spectral slices on

this file

PTSDPY - number of points taken into consideration for each power

spectrum

-4

109

. .

DPO:TPARM.DAT

DESCRIPTION TPARAM.DAT is an input/output file which contains the working

values and default values of the seven user modifiable parameters to program

SELECT.

TYPE TPARAM.DAT is an unformatted binary FORTRAN file.

CONTENTS

Words 1-7 are integer values of the working parameters.

TRACKS - number of tracks requested

FROGAP - frequency jump threshold

KNTLIM - track length start threshold

TIMGAP - spectral slice gap threshold

CMAND1 - automatic move direction (up, down)

NUMI - amount of automatic move

ISTART - lower frequency bound for displays

Words 8-14 contain the integer default values of the same parameters.

DPO:TRKABL.DAT

DESCRIPTION TAKABL. DAT is the file containing the spectral slice data from

MORPK2.DAT which have been selected for analysis by the tracking procedures.

TYPE TRKABL.DAT is a FORTRAN unformatted direct access file.

CONTENTS

Records 1-1023: LTYPE, LINUM (PPDAT(I), I=1, 10)

LTYPE - an integer 1 or 2 to specifying whether the baseline used to

display the spectral slice is solid or broken line

LINUM - integer spectral slice index in MORPK2. DAT

PPDAT - list of integer frequency bin numbers

Record 1024: ZSTART, SMOVE, NWINDS, PTSDPY, TOT99

The first four values are same as for MORPK2.DAT

TOT99 - number of spectral slices in TRKABL.DAT

110

'A.

DPO:TRAKED. DAT

DESCRIPTION TRAKED. DAT is the file containing all tracks generated by the

tracking procedures operating on spectral data contained in DPO:TRKABL.DAT.

The number of tracks is limited to the smaller of a user specified limit,

TRACKS, contained in TPARAM.DAT and 100, the programmed size limit for

TRAKED.DAT.

TYPE TRAKED. DAT is a FORTRAN unformatted direct access file.

CONTENTS

Records 1-100: (THSTRK(I), I = 1, 512)

THSTRK - list of bin numbers representing peaks in the track or -1

where no track element exists in the spectral slice of

corresponding index

Record 101: TRKTOT, TOT99, PTSDPY, ZSTART, ZMOVE, NWINDS

(cf. TRKABL.DAT and MORPK2.DAT)

TRKTOT - actual number of tracks on file

DPO:SLINES. DAT

DESCRIPTION SLINES.DAT is a scratch file used by the tracking procedure in

the track start testing. SLINES. DAT stores all areas of straight line tracks,

i.e., identifies regions in which a constant peak exists.

TYPE SLINES.DAT is a FORTRAN unformatted direct access file.

CONTENTS

Records 1.1023: (LSTR8(I), I 1 1, 3)

LSTR8(1) = frequency bin number

LSTR8(2) = spectral slice index of start

* LSTR8(3) = number of consecutive slices with a peak in this bin

Record 1024 - actual number of LSTR8

11

.4- _ _ _

j

SELECT LINKING PROCEDURE
The necessary command to link program SELECT on the PDP 11/45 is shown in

Figure 21.

.RUN LINK
*DPO:SELECT, SELECT=DPO:SELECT, SY: VTLIB, LPSLIB. SYSLIB/F/C
DPO:MARKIT/O: 1/C
DPO:MOVE2/O: 1/C
DPO:XPEAKS/O: 1/C
DPO:XSTR8S/O: 1/C
DPO:XSETF3/O: 1/C
DPO: XSTAR, XNEARP/O:2/C
DPO: XINTER/O: 2/C
DPO: XPLOT, XYHDLR/O: 2/C
DPO:BUNCH/O: 2/C
DPO: XBLANK/O: 2/C
DPO: POTTY/O: 2/C
DPO:XTDISP/O: 2/C
DPO:WHERE/O: 2/C
DPO: XMATCH/O: 2/C
DPO: XUP/O: 2/C
DPO: XADJST/O: 2

Figure 21 -Program SELECT Linking Procedure

112

I-mo

PROGRAM WAVAN

WAVAN is a syntactic pattern learning/classification system for processing

one-dimensional signal waveforms. These waveforms are strings of symbols

drawn from a given alphabet (e.g., RISE, FALL, LEVEL), each with associated

parameters (like intensity, frequency, duration, decay time) derived from such

routines as found in program VU discussed in the first section of this report.

The functional overview of WAVAN is contained in the ISPARS User's Guide.
1

This section details the program description, input/output, files, and linking

procedure for WAVAN.

'1
.4

'.4

i/

• 113

WAVAN SUBROUTINE DESCRIPTIONS

SUBROUTINE NAME WAVAN

PURPOSE To initiate waveform analysis learning or classification subsystem

as specified by the user.
5

DESCRIPTION WAVAN is a GIRL program which first initializes variables and

arrays associated with the wave feature transition graph data structure and

tests keyboard input to determine the type of waveform processing to be per-

formed. The user first specifies whether processing is to be in the test or

train mode. In the test mode, WAVAN immediately reads from disk the stored

feature graph and the current states of the associated variables. The wave-

form data to be classified are then read and subroutine TEST is called to

perform the classification.

INPUT

Keyboard

YES or NO to test question

YES or NO to create question if previous answer NO

Disk

DPO:WVTREE.NEW - File containing waveform feature transition graph; if

not, create run

DPO:SIGDAT.NEW - File containing test or training signal waveforms

OUTPUT

Test signal classification if in test mode

A Disk:

DPO:WVTREE. NEW - Updated waveform feature transition graph if in train mode

CALLED BY (This is a main program - not called by any other.)

SUBROUTINES CALLED

SGROW
TEST

LVFECH4
LVDUNP GIRS I/O routines4
LVDUMP

.//

114

'L 111...

SUBROUTINE NAME GROW

PURPOSE To create/augment the waveform feature transition graph and library

of average waves for a given event.

DESCRIPTION Subroutine GROW calls WTWAV and DESCEN to assign feature

weights and reorder the feature string according to confidence (weight).

Features from the recorded sequence are taken one by one to form partial

strings, each with a cumulative confidence. When the confidence of a partial

string exceeds a threshold, the last feature added is added as a link in the

feature transition graph a.)d the event represented by this feature is added to

a list tied to the graph at this point. If the event is already on the list,

its associated confidence (also on the list) is increased and the temporal

position average for the feature is updated. This average associates a

relative time of occurrence with each feature. When the sample feature string

for an event is exhausted, GROWAV is called to store the wave data for the

event in the waveform library on disk.

INPUT

Arguments

EVNTID - id number of sample event in event dictionary

Common /FEATUR/

MLAS - array of triples, each representing a waveform feature

NFORMS - length of MLAS

/PRMTRS/ - list of parameters to be used in GROW and GROWAV

/WORDS/ - list of random numbers associated with dictionary events for

use in GIRL graph

/TRE/ - list of random numbers associated with content and structure of

* GIRL graph structure used for storage of feature transition

graph

OUTPUT Modified feature transition graph

CALLED BY WAVAN

SUBROUTINES CALLED WTWAV, DESCEN, GROWAV, STRING

CALLING SEQUENCE CALL GROW (EVNTID)

115
/

!,

SUBROUTINE NAME GROWWAV

PURPOSE To generate a list of different average waves representing a given

event.

DESCRIPTION GROWAV obtains the node containing the list of representative

waves for a given event and calls COMPWV to compare a new (input) wave with

each stored wave on the list. COMPWV returns the identity of the closest

match and, if the score of the match is acceptable, GROWAV averages the new

wave with the specified matching wave on the list and replaces the stored wave

with the new average. If the score of match is not acceptable, the new wave

is added to the list as a new representative wave for the given event.

INPUT

Arguments

EVNTID - event id

Common /WORDS/

WORDS - array of random numbers forming nodes in GIRL graph data base

representing each event

Common /WAVFRM/

WAVPTR - next available block on disk file DPO:WAVDIR.NEW for storing

waves

OUPUT Updated or averaged waveforms stored on GIRL graph data base

CALLED BY GROW

SUBROUTINES CALLED

COMPWV

OUTWAV

GETWAV

CALLING SEQUENCE CALL GROWAV (EVNTID)

116

SUBROUTINE NAME TEST

PURPOSE To classify a test waveform by generating an ordered list of

possible identifications.

DESCRIPTION The test waveform string is recorded and processed in order of

individual wave feature reliabilities. The recorded string of features is

compared with a stored syntax of wave features characteristic of the library

of stored waveforms. Cumulative confidences are maintained as the syntax is

traversed, and when confidence thresholds are exceeded, a list of possible

matching library elements (called candidates) is formed. If the principal

confidence thresholds are not exceeded, a backup (temporary) list of candi-

dates exceeding a lower threshold is also maintained. If the candidate list

is too large (> WTHRES), subroutine TESTWV is called to compare waveforms more

closely and reorder the list; the top WTHRES candidates are returned as

output. If the candidate list is too short (< WTHRES), the temporary list is

used to augment the candidate list. If no valid candidates are found,

subroutine WAVES is called to compare the test wave with the entire library.

Figure 22 contains a flowchart for subroutine TEST.

INPUT

Argument

MLAS - test waveform array

NFORMS - length of MLAS

DISK

4DPO:WVTREE. NEW - contains the GIRL graph storing the waveform syntax and

also the variables associated with the graph

OUTPUT

Common /MATR/

MATCH - vector of id numbers of wave matches

MATES - number of matches

CONMAT - vector of confidences of associated matches

CALLED BY This is called by main program.

1/
11

'I, 1

SUBROUTINE NAME TEST (Cont'd)

SUBROUTINES CALLED

WTWAV

DESCEN

MAXSTK

TESTWV

WAVES

SETLIB

STRING

GIRS routines

CALLING SEQUENCE CALL TEST (MLAS, NFORMS)

118

FETCH FUATURE,
WAVEFOM TREES

FROM DISK
(LWFECHI

WEIGH SIGNAL
FEATURES l BAND

ORDER BY DESCENDING
WEIGHT IWTWAV,

DESCENI

INITIALIZE NODE STACK

STACK AT TOP' OF
FEATURE TREE

A PP NDET FOMSTAK EOMPAROTEM

NRO RELIABAE NO

YESCNDDAE

TRIFANS T S EXS' E7olTM EPY

NO YES
STACPAR EMPTY

NOO
*1 CS - HRS

NON

TRANSIT FROMt T T BY

4I
FRNIgure22N SKSS~ubruieTS lwhr

YE119

Y ES

MORE FEATURES OF WEIGHT
EQUAL TO Fi?

YES NO

A

MRGE CAN, TEMPINTO
TEPR BYREE ORDR

ACCEPT UP TO WTHRESH CANDIDATES ON

ITEMP! INTO MATES.

A Figure 22 -Subroutine TEST Flowchart (Cont'd)

120

SUBROUTINE NAME TESTWV

PURPOSE To compare waveforms of all elements on candidate list to test form

and save list matches on a final candidate list.

DESCRIPTION A list of candidate matches is supplied to TESTWV, and TESTWV

calls COMPWV to compare candidate forms to the test form and score the match.

The candidates are recorded on a temporary list in order of scores and the

best matches (number equal to an input parameter, WTHRES) are re-created on

a new candidate list.

INPUT

Arguments

MLAS - test waveform string

NFORMS - length of MLAS

Other

Candidate list contained in the GIRL graph linked to the node CAND by LIST

and RELIST. CAND, LIST, RELIST contained in COMMON/TRE/.

OUTPUT Revised candidate list contained in the GIRL graph

CALLED BY TEST

SUBROUTINES CALLED COMPWV

GIRS routines

CALLING SEQUENCE CALL TESTNV (MLAS, NFORMS)

121

I', ;

SUBROUTINE NAME WAVES

PURPOSE To cycle through entire library of stored waveforms to compare each

with a given test form.

DESCRIPTION WAVES cycles through the vocabulary of stored waveforms,

obtains the head node of associated waveforms, and calls subroutine COMPWV to

compare stored forms with test form input to WAVES. Stored forms whose score

is below a program threshold are retained on a candidate list of matching

forms.

INPUT

Arguments

MLAS - waveform string

NFORMS - length of MLAS

OUTPUT Candidate list in GIRL graph of matching forms and score for match

CALLED BY TEST

SUBROUTINES CALLED COMPWV

GIRS routines

CALLING SEQUENCE CALL WAVES (MLAS, NFORMS)

SUBROUTINE NAME MAXSTK

PURPOSE To put a node on the stack such that the stack lists items in order

of decreasing confidence.

DESCRIPTION The list attached to STACK by the RELIST link is scanned until

an element is found whose confidence is below that of the input item; the new

item and its confidence are added to the list at this point.

INPUT

Arguments

TA - form to be added to stack

CRSA - confidence associated with this node

I - position of the form in original waveform

GIRL waveform graph

OUTPUT Updated GIRL waveform graph

CALLED BY TEST

SUBROUTINES CALLED GIRS system routines

CALLING SEQUENCE CALL MAXSTK (TA, CRSA,I)

122

SUBROUTINE NAME COMPWV

PURPOSE To compare an input wave to each wave associated with an input node.

DESCRIPTION COMPMV first condenses the input wave by eliminating levels as

separate forms and adding the duration of levels to the duration of the pre-

ceding form. The same thing is done for forms representing small changes.

The condensed wave is compared to each stored wave form by form. If forms do

not agree, COMPWV attempts to either stretch or compress the input form to

achieve agreement. Forms agreement is measured by the in-line function,

DELTST, which is a weighted average of the difference in level, decay time,

and duration. These three differences are also summed over all forms for use

in a scoring function to determine the measure of match between the input and

stored waves. This score is also an in-line function, SCORIT, computing a

weighted average of the difference sums. Stretching is achieved by repeating

a waveform, and compression is achieved by deleting a waveform and either case

is accompanied by appropriate modification to the differences and difference

SUMS.

INPUT

Arguments

NODE - random number associated with node in wavegraph to which library

(stored) waves are linked

PREV - current best score in waveform comparisons

MLAS - input wave form vector

NFORMS - number of form in input wave

TSTING - true for test mode, false for training

I Other

'1 GIRL graph storing waveform data base

OUTPUT

Arguments

PREV - score for this wave comparison if stored wave resulted in better

score than previous best

CHOI - index of form on input node list that corresponds to output score

Common /AVWAV/

AVLEN - length of condensed form

AVWAV - new wave generated by compressing/stretching

12/

• 123

SUBROUTINE NAME COMPNV (Cont'd)

CALLED BY

WAVES

TEST WV

GROWAV

SUBROUTINES CALLED GET WAV

GIRS routines f

CALLING SEQUENCE CALL COMMd (NODE, PREV, CHOI, TSTING)

124

SUBROUTINE NAME DESCEN

PURPOSE To determine that permutation of subscripts which reorders elements

of the feature string in terms of decreasing confidence (weight).

DESCRIPTION The weight vector associating weights or reliability measures

with the string of feature elements is scanned repeatedly for highest weight;

each time the index is added to the permutation matrix REORD.

INPUT

Common /FEATUR/KLAS (768,3), NFEAT

/WEIGHT/WT(768)

where

KLAS is feature string of up to 768 features

NFEAT is number of features in string

WT is vector of associated feature weights

OUTPUT REORD - vector of permutation of weight indices (argument to DESCEN)

CALLED BY

GROW

TEST

SUBROUTINES CALLED None

CALLING SEQUENCE CALL DESCEN (REORD)

125

.

* AMIN" -

SUBROUTINE NAME WTWAV

PURPOSE To assign weights to feature string (waveform) elements.

DESCRIPTION Zero weights are assigned to the first and last form (features)

in the string. The weights for rises or falls are

2048 (D)/M

where D is the absolute change in level for this form and M is the maximum of

D for all rises and falls in the string. The weight for a level is

2048 (L)/G

where L is the duration of the level and G is the maximum G for all levels.

INPUT

Arguments

MLAS - waveform string

NFORMS - length of MLAS

OUTPUT

Common

WT - vector of weights associated with MLAS

CALLED BY

GROW

TEST

SUBROUTINES CALLED None

CALLING SEQUENCE CALL WTWAV (MLAS, NFORMS)

1

12

INTEGER FUNCTION STRING

PURPOSE To determine the GIRL graph link to be associated with a given form

(feature).

DESCRIPTION The value of the function STRING is set to the GIRL link random

numbers RISE, FALL, or LEVEL to correspond to the type of form referred to by

the input argument, K.

INPUT

Arguments

K - form pointer

MLAS - vector of waveforms

Common /TRE/

RISE, FALL, LEVEL - random numbers identifying links associated with

waveform types

OUTPUT STRING (K, MLAS) = either RISE, FALL, or LEVEL depending on the type

of the kth waveform

CALLED BY

GROW

TEST

SUBROUTINES CALLED None

CALLING SEQUENCE CALL STRING (K, MLAS)

I1

t 127

hi i

SUBROUTINE NAME GETWAV

PURPOSE To read a waveform from disk library into program array.

DESCRIPTION GETWAV reads PDP-11 System Library of binary data from disk

using channel and block index supplied to it through arguments.

INPUT

Arguents

INDEX - block number index of desired waveform on disk

ICH - channel number assigned to waveform input file

DISK

DPO:WAVDIR.NEW - binary file containing directory of stored waveforms.

First two words are number of forms and total decay.

OUTPUT

Common /WAVFRM/

SLNGTH - length of stored waveforms

DECAY - total decay of waveform

STDWAV(I,3) - stored waveform

CALLED BY CPMPWV

SUBROUTINES CALLED IREADW of PDP-11 SYSLIB

CALLING SEQUENCE CALL GETWAV (INDEX, ICH)

12'1

.4

41

,I

128

SUBROUTINE NAME OUTWAV

PURPOSE To store waveforms on disk.

DESCRIPTION OUTWAV performs a PDP-11 System Library write to disk using

channel number and block index supplied as arguments.

INPUT

Arguments

INDEX - block number of desired waveform on disk

ICH - channel number assigned to waveform directory file

Common /WAVFRM/

SLNGTH - length of waveform array

DECAY - total decay for waveform

STDWAV - stored waveform

OUTPUT

DISK

DPO:WAVDIR.NEW - binary file containing directory of stored waveforms

CALLED BY GROWAV

SUBROUTINES CALLED None

CALLING SEQUENCE CALL OUTWAV (INDEX, ICH)

SUBROUTINE NAME SETLIB

PURPOSE To set up file definitions for use within rest of program.

DESCRIPTION PDP-11 System Library functions are used to establish the file

DPO:WAVDIR.NEW - create it if this is a "create" or "test" run or find it if

this is an "update" run. In addition, logical unit number 99 is assigned to

DPO:WVTREE. NEW.

INPUT

Arguments:

CREATE - logical variable set to .TRUE. for create run, .FALSE. for update

run

NBLKS - number of blocks to request for each record or waveform on disk

OUTPUT None

CALLED BY WAVAN

* SUBROUTINES CALLED PDP-11 SYSLIB

CALLING SEQUENCE CALL SETLIB (CREATE, NBLKS)

129

WAVAN FILE DESCRIPTIONS

DPO:WVTREE. NEW

DESCRIPTION WVTREE. NEW is the file containing the waveform feature

transition graph and related variables. It is strictly an output file when

WAVAN is executed in the "create" training mode. It is both an input and an

output file in the training update mode, and only an input file in the test

mode.

TYPE WVTREE is a FORTRAN unformatted binary file
14

CONTENTS The contents of WVTREE are read by a call to LVFECH

The last logical record on the file contains program parameters related to

the graph data and is read as follows:

READ (99) FORMNT, WAVPTR, WAVE, INAV, TREE, LIST, NUM, DICTSZ, WORDS,

RISE, FALL, LEV, PLACE, AELIST, TEMP, CAND, STACK

where

WORDS is dictionary of random numbers corresponding to events being

classified by the graph. Current program limits number of events to

twenty.

DPO:WAVDIR.NEW

DESCRIPTION WAVDIR.NEW is a file storing the directory of all stored waves.

All significantly different waves encountered in the training process are

stored in the directory.

TYPE WAVDIR.NEW is a PDP-11 System Library file of binary data currently

limited to 600 blocks in length. Each waveform occupies 6 blocks or 1536

words.

CONTENTS

Each waveform record consists of

SLNGTH - number of triples specifying wave

DECAY - integer value typifying overall decay in level values over

duration of wave

STWAV(512,3) - array of triples specifying triples wave store:

o new height if form a rise or fall or zero if level

o decay time if rise or fall or magnitude of level

o duration of form

130

L -- M

DPO:SIGDAT. NEW

DESCRIPTION SIGDAT.NEW is the file containing waveform data of known events

that are to be used to train the waveform feature transition graph and build

the waveform directory.

TYPE SIGDAT.NEW is a FORTRAN unformatted binary file.

CONTENTS The first logical record on SIGDAT.NEW consists of one integer

value, TIMES, equal to the number of remaining logical records on file. The

remaining logical records have the form

EVNTID, NFORMS (MLAS(I,J), J = 1, 3) I = 1, NFORMS)

where

EVNTID is the identification number of the event depicted by the wave

NFORMS is the number of triple waveforms constituting the wave

MLAS is the array of waveform triples in the wave

'13

1: 13

*

WAVAN LINKING PROCEDURE

Figure 23 contains the PDP 11/45 command to link WAVAN.

RUN LINK

DPO:VARY=DPO;VARY, OTHERS, SETLB2, GIRSZ, SYSLIB/F/C

DPO:ANAAAA/O: 1/C

DPO:UPTTTT/O: 1

Figure 23 -WAVAN Linking Procedure

132

REFERENCES

1. Parsons, W. et al, "Interactive Signal and Pattern Analysis and

Recognition System (ISPARS). Users Guide," DTNSRDC Report (in process of
being published).

2. Sanyal, P. K. et al, "The Waveform Processing System (WPS)," Rome Air

Development Center Technical Report TR-76-224, Vol. I (Oct 1976), Vol. II (Sep

1976, Vol. III (July 1976), Vol. IV (Feb 1977).

3. Sammon, J. W., "The On-Line Pattern Analysis and Recognition

System--OLPARS," Rome Air Development Center Technical Report TR-68-263 (1968).

4. Zaritsky, I., "GIRS (Graph Information Retrieval System) Users

Manual," DTNSRDC Report 79/036 (April 1979).

5. Berkowitz, S., "Graph Information Retrieval Language; Programming

Manual for FORTRAN Complement; Revision One," DTNSRDC Report 76-0085 (Feb

1976).

4

2/ 13

INITIAL DISTRIBUTION

Copies

1 CNR

1 NRL

I NUSC

12 DTIC

CENTER DISTRIBUTION

Copies Code Name

1 18 G. Gleissner

1 1805 E. Cuthill

2 1808 D. Wildy

1 182 A. Camara

5 1824 S. Berkowitz

1 1828 J. Garner

1 184 J. Schot

1 185 T. Corin

1 187 M. Zubkoff

1 189 G. Gray

1 522.1 TIC (C)

1 522.2 TIC (A)

4

'

//13

.1_______-

DTNSRDC ISSUES THREE TYPES OF REPORTS

1. DTNSRDC REPORTS, A FORMAL SERIES, CONTAIN INFORMATION OF PERMANENT TECH-
NICAL VALUE. THEY CARRY A CONSECUTIVE NUMERICAL IDENTIFICATION REGARDLESS OF
THEIR CLASSIFICATION OR THE ORIGINATING DEPARTMENT.

2. DEPARTMENTAL REPORTS, A SEMIFORMAL SERIES, CONTAIN INFORMATION OF A PRELIM-
INARY, TEMPORARY, OR PROPRIETARY NATURE OR OF LIMITED INTEREST OR SIGNIFICANCE.
THEY CARRY A DEPARTMENTAL ALPHANUMERICAL IDENTIFICATION.

3. TECHNICAL MEMORANDA, AN INFORMAL SERIES, CONTAIN TECHNICAL DOCUMENTATION
OF LIMITED USE AND INTEREST. THEY ARE PRIMARILY WORKING PAPERS INTENDED FOR IN-
TERNAL USE. THEY CARRY AN IDENTIFYING NUMBER WHICH INDICATES THEIR TYPE AND THE
NUMERICAL CODE OF THE ORIGINATING DEPARTMENT. ANY DISTRIBUTION OUTSIDE DTNSRDC
MUST BE APPROVED BY THE HEAD OF THE ORIGINATING DEPARTMENT ON A CASE-BY-CASE
BASIS.

-4

1!

,i ~A

i

